[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Adaptive Multistage Multiuser Detector for MC-CDMA Communication Systems Using Evolutionary Computation Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The main targets of multi-carrier direct sequence code division multiple access (MC-DS-CDMA) mobile communication systems are to overcome the multi-path fading influences as well as the near-far effect and to increase its capacity. Many optimal and suboptimal multi-user detection approaches have recently been proposed and analyzed in literature. Unfortunately, most of them share the drawback of requiring a practical solution. Therefore, we have presented an adaptive multistage interference cancellation structure based on the particle swarm optimization (PSO) approach in this paper, and have effectively eliminated the multi-access interference (MAI) and near-far effect, and quickly converges to global optimal solution. Simulation results show that the proposed scheme can outperform some of the existed interference cancellation methods in both the additive white Gaussian noise and the multi-path fading channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abedi S., Tafazoll R. (2002) Genetically modified multiuser detection for code division multiple access systems. IEEE Journal on Selected Areas in Communications 20: 463–473

    Article  Google Scholar 

  2. Andrews J.G., Meng T.H.Y. (2004) Performance of multicarrier CDMA with successive interference cancellation in a multipath fading channel. IEEE Transactions on Communications 52: 811–822

    Article  Google Scholar 

  3. Cui S., Weile D.S. (2005) Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbed. IEEE Transactions on Antennas and Propagation 53: 3616–3623

    Article  Google Scholar 

  4. Eberhart, R. C., & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms. In Proceedings of IEEE Congress on Evolutionary Computation, Seoul, Korea (pp. 94–97).

  5. Ergun C., Haciglu K. (2000) Multiuser detection using a genetic algorithm in CDMA communication systems. IEEE Transactions on Communications 48: 1374–1383

    Article  Google Scholar 

  6. Fang L., Milstein L.B. (2000) Successive interference cancellation in multicarrier DS/CDMA. IEEE Transactions on Communications 48: 1530–1540

    Article  Google Scholar 

  7. Fogle D.B. (2000) Evolutionary computation Toward a new philosophy of machine intelligence (2nd ed). IEEE Press, Piscataway, NJ

    Google Scholar 

  8. Goldberg D.E. (1989) Genetic algorithm in search, optimization, and machine learning. Wesley, Addison

    Google Scholar 

  9. Hanzo L., Yang L.-L., Kuan E.-L., Yen K. (2003) Single- and multi-carrier DS-CDMA. Wiley/IEEE Press, New York

    Book  Google Scholar 

  10. Hara S., Prasad R. (1997) Overview of multi-carrier CDMA. IEEE Communications Magazine 35: 126–133

    Article  Google Scholar 

  11. Hung H.-L., Huang Y.-F., Wen J.-H. (2008) An adaptive multistage parallel interference canceller for CDMA communication systems. IEEE Transactions on Vehicular Technology 57(3): 1944–1951

    Article  Google Scholar 

  12. Juntti M., Vehkapera M., Leinonen J., Li Z., Tujkovic D., Tsumura S., Hara S. (2005) MIMO MC-CDMA communications for future cellular system. IEEE Communications Magazine 43: 118–124

    Article  Google Scholar 

  13. Kalofonos D.N., Stojanovic M., Proakis J.G. (2003) Performance of adaptive MC-CDMA detectors in rapidly fading channels. IEEE Transactions on Communications 2: 229–239

    Article  Google Scholar 

  14. Krusienski D.J., Jenkins W.K. (2005) Design and performance of adaptive systems based on structured stochastic optimization strategies. IEEE Circuits and Systems Magazine 5(1): 8–20

    Article  Google Scholar 

  15. Lain J.-K., Lai J.-J. (2007) Ant colony optimisation-based multiuser detection for direct-sequence CDMA systems with diversity reception. IET Communications 1: 556–561

    Article  Google Scholar 

  16. Lee S.-H., Hung H.-L., Huang Y.-F., Wen J.-H. (2009) Performance analysis of PSO-based parallel interference canceller for MC-CDMA communication systems. European Transactions on Telecommunications 20(3): 287–297

    Article  Google Scholar 

  17. Li J., Letaief K.B., Cao Z. (2004) A reduced-complexity maximum likelihood method for multiuser detection. IEEE Transactions on Communications 52: 289–295

    Article  Google Scholar 

  18. Liu H., Li J. (2008) A particle swarm optimization-based multiuser detection for receive-diversity-aided STBC systems. IEEE Signal Processing Letter 15: 29–32

    Article  Google Scholar 

  19. Miller S.L., Rainbolt B.J. (2000) MMSE detection of multicarrier CDMA. IEEE Journal on Selected Areas in Communications 18: 2356–2362

    Article  Google Scholar 

  20. Proakis J.G. (2001) Digital communications (4th ed). Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  21. Ratnaweera A., Halgamuge S.K., Watson H.C. (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8: 240–255

    Article  Google Scholar 

  22. Sacchi C., Donelli M., D’Orazio L., Fedrizzi R., De Natale F.G.B. (2007) Genetic algorithm-based MMSE receiver for MC-CDMA systems transmitting over time-varying mobile channels. Electronics Letters 43: 172–173

    Article  Google Scholar 

  23. Soo K.K., Siu Y.M., Chan W.S., Yang L., Chen R.S. (2007) Particle-swarm-optimization-based multiuser detection for CDMA communication. IEEE Transactions on Vehicular Technology 56: 3006–3013

    Article  Google Scholar 

  24. Soo S.H., Rao S.S. (2000) Annealed neural network based multiuser detector in code division multiple access communications. IET Communnications 47: 57–62

    Google Scholar 

  25. Varanasi M.K., Aazgang B. (1990) Multistage detection in asynchronous code division multiple-access communications. IEEE Transactions on Communications 38: 509–519

    Article  Google Scholar 

  26. Verdu S. (1998) Multiuser detection. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Yang L.-L., Hanzo L. (2003) Multicarrier CDMA systems a multiple access scheme for ubiquitous broadband wireless communication. IEEE Communications Magazine 41: 116–124

    Article  Google Scholar 

  28. Yi S.J., Tsimenidis C.C., Hinton O.R., Sharif B.S. (2003) Computationally efficient adaptive MMSE receiver for synchronous MC-CDMA communication systems. Electronics Letters 39: 1539–1541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Horng Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, HL., Wen, JH. An Adaptive Multistage Multiuser Detector for MC-CDMA Communication Systems Using Evolutionary Computation Technique. Wireless Pers Commun 53, 613–633 (2010). https://doi.org/10.1007/s11277-009-9722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-009-9722-3

Keywords

Navigation