[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Adaptive multi-user uplink resource allocation based on access delay analysis in IEEE 802.11ax

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In IEEE 802.11ax, orthogonal frequency division multiple access (OFDMA) is introduced in the uplink for multi-user transmission. The uplink resource units (RUs) can be allocated by the combination of random access (RA) and scheduled access (SA) with specific proportion. And the RU allocation ratio of RA to SA will affect the overall performance. In this paper, an adaptive uplink resource allocation scheme is proposed based on the analysis of access delay. To achieve minimum average delay, according to the distribution of different kinds of traffic and the number of stations (STAs) which have reserved RUs for the next uplink transmission, a specific proportion of RUs are allocated for SA and the remainders are for RA. The specific allocation of RUs is obtained by solving the objective function which aims to minimize the expected access delay. When the distribution of traffic or the number of reserved RUs changes, the allocation of RUs for SA and RA will be adjusted accordingly. In this manner, the RUs will be assigned with low access delay, and the utilization of RUs will be guaranteed. The simulation results show that the proposed adaptive allocation scheme outperforms the fixed allocation uplink OFDMA scheme in terms of throughput and access latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Elwekeil, M., Wang, T., & Zhang, S. (2021). Deep learning based adaptive modulation and coding for uplink multi-user SIMO transmissions in IEEE 802.11ax WLANs. Wireless Networks. https://doi.org/10.1007/s11276-021-02803-y

    Article  Google Scholar 

  2. Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2019). A Tutorial on IEEE 802.11ax High Efficiency WLANs. IEEE Communications Surveys Tutorials, 21(1), 197–216. https://doi.org/10.1109/COMST.2018.2871099

    Article  Google Scholar 

  3. Lanante, L., Ghosh, C., & Roy, S. (2021). Hybrid OFDMA random access with resource unit sensing for next-Gen 802.11ax WLANs. IEEE Transactions on Mobile Computing, 20(12), 3338–3350. https://doi.org/10.1109/TMC.2020.3000503

    Article  Google Scholar 

  4. Ziouva, E., & Antonakopoulos, T. (2002). CSMA/CA performance under high traffic conditions: Throughput and delay analysis. Computer Communications, 25(3), 313–321. https://doi.org/10.1016/S0140-3664(01)00369-3

    Article  Google Scholar 

  5. Kamoun, M., Mazet, L., & Gault, S. (2009). Efficient backward compatible allocation mechanism for multi-user CSMA/CA schemes. First International Conference on Communications and Networking, 2009, 1–6. https://doi.org/10.1109/COMNET.2009.5373561

    Article  Google Scholar 

  6. Kosek-Szott, K. & Domino, K. (2022). An efficient backoff procedure for IEEE 802.11ax Uplink OFDMA-based random access. IEEE Access 10, 8855–8863 (2022). https://doi.org/10.1109/ACCESS.2022.3140560

  7. Bellalta, B., & Kosek-Szott, K. (2019). Ap-initiated multi-user transmissions in IEEE 802.11ax WLANs. Ad Hoc Networks, 85, 145–159. https://doi.org/10.1016/j.adhoc.2018.10.021

    Article  Google Scholar 

  8. Behara, A., & Venkatesh, T. G. (2022). Fluid-limit model for dynamic MU-OFDMA resource allocation of Wi-Fi6 networks. IEEE Communications Letters, 26(1), 207–211. https://doi.org/10.1109/LCOMM.2021.3125421

    Article  Google Scholar 

  9. Naik, G., Bhattarai, S. & Park, J.-M. (2018). Performance analysis of uplink multi-user OFDMA in IEEE 802.11ax. In: 2018 IEEE international conference on communications (ICC), pp. 1–6. https://doi.org/10.1109/ICC.2018.8422692

  10. Bhattarai, S., Naik, G. & Park, J.-M.J. (2019). Uplink resource allocation in IEEE 802.11ax. In: ICC 2019 - 2019 IEEE international conference on communications (ICC), pp. 1–6 . https://doi.org/10.1109/ICC.2019.8761594

  11. Hocini, K. & Yazid, M. (2021). Towards high performance full duplex MAC protocol in high efficiency WLANs. In: Hatti, M. (Eds.) ICAIRES 2020 : artificial intelligence and renewables towards an energy transition. (vol 174., pp. 756–765). Springer, Cham. https://doi.org/10.1007/978-3-030-63846-7_72

  12. Selinis, I., Katsaros, K., Vahid, S. & Tafazolli, R. (2020). An IEEE 802.11ax interference-aware MAC Queue. In: 2020 IEEE 31st annual international symposium on personal, indoor and mobile radio communications (pp. 1–7). https://doi.org/10.1109/PIMRC48278.2020.9217315

  13. Zhou, R., Li, B., Yang, M., Yan, Z., & Yang, A. (2019). DRA-OFDMA: double random access based QoS oriented OFDMA MAC protocol for the next generation WLAN. Mobile networks applications, 24(5), 1425–1436. https://doi.org/10.1007/s11036-019-01268-w

    Article  Google Scholar 

  14. Wilhelmi, F., Barrachina-Muñoz, S., Cano, C., Selinis, I., & Bellalta, B. (2021). Spatial reuse in IEEE 802.11ax WLANs. Computer Communications, 170, 65–83. https://doi.org/10.1016/j.comcom.2021.01.028

    Article  Google Scholar 

  15. Memon, S. K., Nisar, K., Hijazi, M. H. A., Chowdhry, B. S., Sodhro, A. H., Pirbhulal, S., & Rodrigues, J. J. P. C. (2021). A survey on 802.11 MAC industrial standards, architecture, security supporting emergency traffic: Future directions. Journal of Industrial Information Integration, 24, 100225. https://doi.org/10.1016/j.jii.2021.100225

    Article  Google Scholar 

  16. Yang, M., Li, B., & Yan, Z. (2021). MAC technology of IEEE 802.11ax: Progress and tutorial. Mobile Networks and Applications. https://doi.org/10.1007/s11036-020-01622-3

    Article  Google Scholar 

  17. Joo, S., Kim, T., Song, T., & Pack, S. (2020). MU-MIMO enabled uplink OFDMA MAC protocol in dense IEEE 802.11ax WLANs. ICT Express, 6(4), 287–290. https://doi.org/10.1016/j.icte.2020.04.007

    Article  Google Scholar 

  18. Brahmi, S., Yazid, M., & Omar, M.: Multiuser access via OFDMA technology in high density IEEE 802.11ax WLANs: a survey. In 2020 Second international conference on embedded & distributed systems (EDiS), pp. 105–110 (2020). https://doi.org/10.1109/EDiS49545.2020.9296440

  19. Daldoul, Y., Meddour, D.-E., & Ksentini, A. (2020). Performance Evaluation of OFDMA and MU-MIMO in 802.11ax Networks. Computer Networks, 182, 107477. https://doi.org/10.1016/j.comnet.2020.107477

    Article  Google Scholar 

  20. Vijay, B. T., & Malarkodi, B. (2019). High-efficiency WLANs for dense deployment scenarios. Sādhanā, 44, 33. https://doi.org/10.1007/s12046-018-0995-7

    Article  Google Scholar 

  21. Sangdeh, P. K., & Zeng, H. (2021). Deepmux: Deep-learning-based Channel Sounding and Resource Allocation for IEEE 802.11ax. IEEE Journal on Selected Areas in Communications, 39(8), 2333–2346. https://doi.org/10.1109/JSAC.2021.3087246

    Article  Google Scholar 

  22. Karmakar, R., Chattopadhyay, S., & Chakraborty, S. (2019). Intelligent MU-MIMO user selection with dynamic link adaptation in IEEE 802.11ax. IEEE Transactions on Wireless Communications, 18(2), 1155–1165. https://doi.org/10.1109/TWC.2018.2890219

    Article  Google Scholar 

  23. Azhari, S., G¨urb¨uz, , Ercetin, O., Daei, M., Barghi, H. & Nassiri, M. (2020). Delay sensitive resource allocation over high speed IEEE 802.11 wireless LANs. Wireless Networks. https://doi.org/10.1007/s11276-018-1889-7

  24. Jiang, Z., Li, B., Yang, M., Yan, Z. (2021). Latency oriented OFDMA random access scheme for the next GENERATION WLAN: IEEE 802.11be. In: Lin, YB., Deng, DJ. (Eds.), SGIoT 2020: Smart grid and internet of things. (vol 354., pp. 351–362). Springer, Cham. https://doi.org/10.1007/978-3-030-69514-9_28

  25. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547. https://doi.org/10.1109/49.840210

    Article  Google Scholar 

  26. Lanante, L., Uwai, H.O.T., Nagao, Y., Kurosaki, M. & Ghosh, C.: Performance analysis of the 802.11ax UL OFDMA random access protocol in dense networks. In: 2017 IEEE international conference on communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC.2017.7997340

  27. Lee, K.-h. (2019). Performance analysis of the IEEE 802.11ax MAC protocol for heterogeneous Wi-Fi networks in non-saturated conditions. Sensors (Basel, Switzerland) 19 (2019). https://doi.org/10.3390/s19071540

  28. Ali, M. Z., Mišić, J., & Mišić, V. B. (Aug.2018). Uplink access protocol in IEEE 802.11ac. IEEE Transactions on Wireless Communications, 17(8), 5535–5551. https://doi.org/10.1109/TWC.2018.2845410

    Article  Google Scholar 

  29. Nurchis, M., & Bellalta, B. (2019). Target wake time: scheduled access in IEEE 802.11ax WLANs. IEEE Wireless Communications, 26(2), 142–150. https://doi.org/10.1109/MWC.2019.1800163

    Article  Google Scholar 

  30. Qiu, W., Chen, G., Nguyen, K. N., Sehgal, A., Nayak, P., & Choi, J. (2021). Category-based 802.11ax target wake time solution. IEEE Access, 9, 100154–100172. https://doi.org/10.1109/ACCESS.2021.3096940

    Article  Google Scholar 

  31. Kornycky, J., Abdul-Hameed, O., Kondoz, A., & Barber, B. C. (Feb.2017). Radio frequency traffic classification over WLAN. IEEE/ACM Transactions on Networking, 25(1), 56–68. https://doi.org/10.1109/TNET.2016.2562259

    Article  Google Scholar 

  32. Engelstad, P. E. & Østerbø, O. N. (2005). Non-saturation and saturation analysis of IEEE 802.11e EDCA with starvation prediction. In Proceedings of the 8th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems. 2005: 224–233. https://doi.org/10.1145/1089444.1089485

  33. Shehab, M., Hagelskjær, A. K., Kalør, A. E., Popovski, P. & Alves, H. (2020). Traffic prediction based fast uplink grant for Massive IoT. 2020 IEEE 31st annual international symposium on personal, indoor and mobile radio communications, 2020, pp. 1–6. https://doi.org/10.1109/PIMRC48278.2020.9217258

  34. Deng, D.-J., Li, B., Huang, L., Ke, C.-H., & Huang, Y.-M. (2009). Saturation throughput analysis of multi-rate IEEE 802.11 wireless networks. Wireless Communication. Mobile. Computing., 9, 1102–1112. https://doi.org/10.1002/wcm.668

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China No. 61971176 and the Fundamental Research Funds for the Central Universities of China under grant No. PA2020GDKC0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Peng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Abbreviations

Appendix A: Abbreviations

In Table 3 we provide the full names of the abbreviations used in the paper.

Table 3 List of acronyms

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., Yin, Q., Zhang, K. et al. Adaptive multi-user uplink resource allocation based on access delay analysis in IEEE 802.11ax. Wireless Netw 29, 1223–1235 (2023). https://doi.org/10.1007/s11276-022-03192-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03192-6

Keywords

Navigation