Abstract
In IEEE 802.11ax, orthogonal frequency division multiple access (OFDMA) is introduced in the uplink for multi-user transmission. The uplink resource units (RUs) can be allocated by the combination of random access (RA) and scheduled access (SA) with specific proportion. And the RU allocation ratio of RA to SA will affect the overall performance. In this paper, an adaptive uplink resource allocation scheme is proposed based on the analysis of access delay. To achieve minimum average delay, according to the distribution of different kinds of traffic and the number of stations (STAs) which have reserved RUs for the next uplink transmission, a specific proportion of RUs are allocated for SA and the remainders are for RA. The specific allocation of RUs is obtained by solving the objective function which aims to minimize the expected access delay. When the distribution of traffic or the number of reserved RUs changes, the allocation of RUs for SA and RA will be adjusted accordingly. In this manner, the RUs will be assigned with low access delay, and the utilization of RUs will be guaranteed. The simulation results show that the proposed adaptive allocation scheme outperforms the fixed allocation uplink OFDMA scheme in terms of throughput and access latency.
Similar content being viewed by others
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Elwekeil, M., Wang, T., & Zhang, S. (2021). Deep learning based adaptive modulation and coding for uplink multi-user SIMO transmissions in IEEE 802.11ax WLANs. Wireless Networks. https://doi.org/10.1007/s11276-021-02803-y
Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2019). A Tutorial on IEEE 802.11ax High Efficiency WLANs. IEEE Communications Surveys Tutorials, 21(1), 197–216. https://doi.org/10.1109/COMST.2018.2871099
Lanante, L., Ghosh, C., & Roy, S. (2021). Hybrid OFDMA random access with resource unit sensing for next-Gen 802.11ax WLANs. IEEE Transactions on Mobile Computing, 20(12), 3338–3350. https://doi.org/10.1109/TMC.2020.3000503
Ziouva, E., & Antonakopoulos, T. (2002). CSMA/CA performance under high traffic conditions: Throughput and delay analysis. Computer Communications, 25(3), 313–321. https://doi.org/10.1016/S0140-3664(01)00369-3
Kamoun, M., Mazet, L., & Gault, S. (2009). Efficient backward compatible allocation mechanism for multi-user CSMA/CA schemes. First International Conference on Communications and Networking, 2009, 1–6. https://doi.org/10.1109/COMNET.2009.5373561
Kosek-Szott, K. & Domino, K. (2022). An efficient backoff procedure for IEEE 802.11ax Uplink OFDMA-based random access. IEEE Access 10, 8855–8863 (2022). https://doi.org/10.1109/ACCESS.2022.3140560
Bellalta, B., & Kosek-Szott, K. (2019). Ap-initiated multi-user transmissions in IEEE 802.11ax WLANs. Ad Hoc Networks, 85, 145–159. https://doi.org/10.1016/j.adhoc.2018.10.021
Behara, A., & Venkatesh, T. G. (2022). Fluid-limit model for dynamic MU-OFDMA resource allocation of Wi-Fi6 networks. IEEE Communications Letters, 26(1), 207–211. https://doi.org/10.1109/LCOMM.2021.3125421
Naik, G., Bhattarai, S. & Park, J.-M. (2018). Performance analysis of uplink multi-user OFDMA in IEEE 802.11ax. In: 2018 IEEE international conference on communications (ICC), pp. 1–6. https://doi.org/10.1109/ICC.2018.8422692
Bhattarai, S., Naik, G. & Park, J.-M.J. (2019). Uplink resource allocation in IEEE 802.11ax. In: ICC 2019 - 2019 IEEE international conference on communications (ICC), pp. 1–6 . https://doi.org/10.1109/ICC.2019.8761594
Hocini, K. & Yazid, M. (2021). Towards high performance full duplex MAC protocol in high efficiency WLANs. In: Hatti, M. (Eds.) ICAIRES 2020 : artificial intelligence and renewables towards an energy transition. (vol 174., pp. 756–765). Springer, Cham. https://doi.org/10.1007/978-3-030-63846-7_72
Selinis, I., Katsaros, K., Vahid, S. & Tafazolli, R. (2020). An IEEE 802.11ax interference-aware MAC Queue. In: 2020 IEEE 31st annual international symposium on personal, indoor and mobile radio communications (pp. 1–7). https://doi.org/10.1109/PIMRC48278.2020.9217315
Zhou, R., Li, B., Yang, M., Yan, Z., & Yang, A. (2019). DRA-OFDMA: double random access based QoS oriented OFDMA MAC protocol for the next generation WLAN. Mobile networks applications, 24(5), 1425–1436. https://doi.org/10.1007/s11036-019-01268-w
Wilhelmi, F., Barrachina-Muñoz, S., Cano, C., Selinis, I., & Bellalta, B. (2021). Spatial reuse in IEEE 802.11ax WLANs. Computer Communications, 170, 65–83. https://doi.org/10.1016/j.comcom.2021.01.028
Memon, S. K., Nisar, K., Hijazi, M. H. A., Chowdhry, B. S., Sodhro, A. H., Pirbhulal, S., & Rodrigues, J. J. P. C. (2021). A survey on 802.11 MAC industrial standards, architecture, security supporting emergency traffic: Future directions. Journal of Industrial Information Integration, 24, 100225. https://doi.org/10.1016/j.jii.2021.100225
Yang, M., Li, B., & Yan, Z. (2021). MAC technology of IEEE 802.11ax: Progress and tutorial. Mobile Networks and Applications. https://doi.org/10.1007/s11036-020-01622-3
Joo, S., Kim, T., Song, T., & Pack, S. (2020). MU-MIMO enabled uplink OFDMA MAC protocol in dense IEEE 802.11ax WLANs. ICT Express, 6(4), 287–290. https://doi.org/10.1016/j.icte.2020.04.007
Brahmi, S., Yazid, M., & Omar, M.: Multiuser access via OFDMA technology in high density IEEE 802.11ax WLANs: a survey. In 2020 Second international conference on embedded & distributed systems (EDiS), pp. 105–110 (2020). https://doi.org/10.1109/EDiS49545.2020.9296440
Daldoul, Y., Meddour, D.-E., & Ksentini, A. (2020). Performance Evaluation of OFDMA and MU-MIMO in 802.11ax Networks. Computer Networks, 182, 107477. https://doi.org/10.1016/j.comnet.2020.107477
Vijay, B. T., & Malarkodi, B. (2019). High-efficiency WLANs for dense deployment scenarios. Sādhanā, 44, 33. https://doi.org/10.1007/s12046-018-0995-7
Sangdeh, P. K., & Zeng, H. (2021). Deepmux: Deep-learning-based Channel Sounding and Resource Allocation for IEEE 802.11ax. IEEE Journal on Selected Areas in Communications, 39(8), 2333–2346. https://doi.org/10.1109/JSAC.2021.3087246
Karmakar, R., Chattopadhyay, S., & Chakraborty, S. (2019). Intelligent MU-MIMO user selection with dynamic link adaptation in IEEE 802.11ax. IEEE Transactions on Wireless Communications, 18(2), 1155–1165. https://doi.org/10.1109/TWC.2018.2890219
Azhari, S., G¨urb¨uz, , Ercetin, O., Daei, M., Barghi, H. & Nassiri, M. (2020). Delay sensitive resource allocation over high speed IEEE 802.11 wireless LANs. Wireless Networks. https://doi.org/10.1007/s11276-018-1889-7
Jiang, Z., Li, B., Yang, M., Yan, Z. (2021). Latency oriented OFDMA random access scheme for the next GENERATION WLAN: IEEE 802.11be. In: Lin, YB., Deng, DJ. (Eds.), SGIoT 2020: Smart grid and internet of things. (vol 354., pp. 351–362). Springer, Cham. https://doi.org/10.1007/978-3-030-69514-9_28
Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547. https://doi.org/10.1109/49.840210
Lanante, L., Uwai, H.O.T., Nagao, Y., Kurosaki, M. & Ghosh, C.: Performance analysis of the 802.11ax UL OFDMA random access protocol in dense networks. In: 2017 IEEE international conference on communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC.2017.7997340
Lee, K.-h. (2019). Performance analysis of the IEEE 802.11ax MAC protocol for heterogeneous Wi-Fi networks in non-saturated conditions. Sensors (Basel, Switzerland) 19 (2019). https://doi.org/10.3390/s19071540
Ali, M. Z., Mišić, J., & Mišić, V. B. (Aug.2018). Uplink access protocol in IEEE 802.11ac. IEEE Transactions on Wireless Communications, 17(8), 5535–5551. https://doi.org/10.1109/TWC.2018.2845410
Nurchis, M., & Bellalta, B. (2019). Target wake time: scheduled access in IEEE 802.11ax WLANs. IEEE Wireless Communications, 26(2), 142–150. https://doi.org/10.1109/MWC.2019.1800163
Qiu, W., Chen, G., Nguyen, K. N., Sehgal, A., Nayak, P., & Choi, J. (2021). Category-based 802.11ax target wake time solution. IEEE Access, 9, 100154–100172. https://doi.org/10.1109/ACCESS.2021.3096940
Kornycky, J., Abdul-Hameed, O., Kondoz, A., & Barber, B. C. (Feb.2017). Radio frequency traffic classification over WLAN. IEEE/ACM Transactions on Networking, 25(1), 56–68. https://doi.org/10.1109/TNET.2016.2562259
Engelstad, P. E. & Østerbø, O. N. (2005). Non-saturation and saturation analysis of IEEE 802.11e EDCA with starvation prediction. In Proceedings of the 8th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems. 2005: 224–233. https://doi.org/10.1145/1089444.1089485
Shehab, M., Hagelskjær, A. K., Kalør, A. E., Popovski, P. & Alves, H. (2020). Traffic prediction based fast uplink grant for Massive IoT. 2020 IEEE 31st annual international symposium on personal, indoor and mobile radio communications, 2020, pp. 1–6. https://doi.org/10.1109/PIMRC48278.2020.9217258
Deng, D.-J., Li, B., Huang, L., Ke, C.-H., & Huang, Y.-M. (2009). Saturation throughput analysis of multi-rate IEEE 802.11 wireless networks. Wireless Communication. Mobile. Computing., 9, 1102–1112. https://doi.org/10.1002/wcm.668
Acknowledgements
This research was supported by the National Natural Science Foundation of China No. 61971176 and the Fundamental Research Funds for the Central Universities of China under grant No. PA2020GDKC0008.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A: Abbreviations
Appendix A: Abbreviations
In Table 3 we provide the full names of the abbreviations used in the paper.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Peng, M., Yin, Q., Zhang, K. et al. Adaptive multi-user uplink resource allocation based on access delay analysis in IEEE 802.11ax. Wireless Netw 29, 1223–1235 (2023). https://doi.org/10.1007/s11276-022-03192-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-022-03192-6