[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Secure transmission in one-bit cell-free massive MIMO system with multiple non-colluding eavesdroppers

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates the secrecy performance of the one-bit cell-free massive multiple-input multiple-output system in the presence of multiple non-colluding eavesdroppers (Eves), considering that access points (APs) are deployed with one-bit analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), or only one of them, or ideally infinite-resolution ones. Based on Bussgang decomposition theory and the introduction of maximum ratio transmission, artificial noise (AN) technologies, we derive closed-form expressions for achievable rates of legitimate users and upper-bound expressions for ergodic leakage information rates of Eves. We use the achievable secrecy rate to evaluate network security performance. Through theoretical analysis and numerical results under the four cases at APs , whether the resolution of ADCs or DACs is one-bit or not, we evaluate the effect of the number of APs or Eves, the number of APs’ or Eves’ antennas, the downlink transmit power, and the power fraction into signal symbols or AN symbols on the secrecy performance, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akyildiz, I. F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, 8, 133995–134030.

    Article  Google Scholar 

  2. Ullah, S., Mahyiddin, W. A., Zakaria, N. A., Latef, T. A., Noordin, K. A., & Dimyati, K. (2018). Training size optimization with reduced complexity in cell-free massive MIMO system. Wireless Networks, 25(4), 1983–1994.

    Article  Google Scholar 

  3. Long, D. N., Duong, T. Q., Ngo, H. Q., & Tourki, K. (2017). Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Communications Letters, 21(8), 1871–1874.

    Article  Google Scholar 

  4. Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., & Larsson, E. G. (2017). On the total energy efficiency of cell-free massive MIMO. IEEE Transactions on Green Communications and Networking, 2, 25–39.

    Article  Google Scholar 

  5. Bjrnson, E., Sanguinetti, L., Wymeersch, H., Hoydis, J., & Marzetta, T. L. (2019). Massive MIMO is a reality-what is next? Digital Signal Processing, 94, 3–20.

    Article  Google Scholar 

  6. Jiang, H., Zhang, Z., Dang, J., & Wu, L. (2018). A novel 3-D massive MIMO channel model for vehicle-to-vehicle communication environments. IEEE Transactions on Communications, 66(1), 79–90.

    Article  Google Scholar 

  7. Wang, J., Gui, G., Ohtsuki, T., Adebisi, B., Gacanin, H., & Sari, H. (2021). Compressive sampled CSI feedback method based on deep learning for FDD massive MIMO systems. IEEE Transactions on Communications, 69(9), 5873–5885.

    Article  Google Scholar 

  8. Yang, Y., Gao, F., Zhong, Z., Ai, B., & Alkhateeb, A. (2020). Deep transfer learning-based downlink channel prediction for FDD massive MIMO systems. IEEE Transactions on Communications, 68(12), 7485–7497.

    Article  Google Scholar 

  9. Zhao, R., Yin, J., Xue, Z., Gui, G., Adebisi, B., Ohtsuki, T., et al. (2021). An efficient intrusion detection method based on dynamic autoencoder. IEEE Wireless Communications Letters, 10(8), 1707–1711.

    Article  Google Scholar 

  10. Zhang, J., Dai, L., He, Z., Shi, J., & Xu, L. (2017). Performance analysis of mixed-ADC massive MIMO systems over Rician fading channels. IEEE Journal on Selected Areas in Communications, 35, 1327–1338.

    Article  Google Scholar 

  11. Li, Y., Tao, C., Swindlehurst, A. L., Mezghani, A., & Liu, L. (2017). Downlink achievable rate analysis in massive MIMO systems with one-bit DACs. IEEE Communications Letters, 21(7), 1669–1672.

    Article  Google Scholar 

  12. Li, Y., Tao, C., Mezghani, A., Swindlehurst, A. L., Seco-Granados, G., & Liu, L. (2016). Optimal design of energy and spectral efficiency tradeoff in one-bit massive MIMO systems. Revised April 12, 2017, from arXiv:1612.03271v2

  13. Park, S. H., Simeone, O., Eldar, Y. C., & Erkip, E. (2018). Optimizing pilots and analog processing for channel estimation in cell-free massive MIMO with one-bit ADCs. In: 2018 IEEE 19th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–5).

  14. Domouchtsidis, S., Tsinos, C. G., Chatzinotas, S., & Ottersten, B. (2021). Joint symbol level precoding and combining for MIMO-OFDM transceiver architectures based on one-bit DACs and ADCs. IEEE Transactions on Wireless Communications, 20, 4601–4613.

    Article  Google Scholar 

  15. Shang, X., Li, J., & Stoica, P. (2021). Weighted spice algorithms for range-doppler imaging using one-bit automotive radar. IEEE Journal of Selected Topics in Signal Processing, 15(4), 1–1.

    Article  Google Scholar 

  16. Cho, Y., & Hong, S. (2019). One-bit successive-cancellation soft-output (OSS) detector for uplink MU-MIMO systems with one-bit ADCs. IEEE Access, 7, 27172–27182.

    Article  Google Scholar 

  17. Park, G., & Hong, S. (2019). Construction of 1-bit transmit-signal vectors for downlink mu-miso systems with PSK signaling. IEEE Transactions on Vehicular Technology, 68(8), 8270–8274.

    Article  Google Scholar 

  18. Wang, H. M., Zheng, T. X., Yuan, J., Towsley, D., & Lee, M. H. (2016). Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications, 64(3), 1204–1219.

    Article  Google Scholar 

  19. Teeti, M. A. (2020). Downlink secrecy rate of one-bit massive MIMO system with active eavesdropping. IEEE Access, 8, 37821–37842.

    Article  Google Scholar 

  20. Hoang, T. M., Ngo, H. Q., Duong, T. Q., Tuan, H. D., & Marshall, A. (2019). Cell-free massive MIMO networks: Optimal power control against active eavesdropping. IEEE Transactions on Communications, 66(10), 4724–4737.

    Article  Google Scholar 

  21. Bao, T., Yang, H. C., & Hasna, M. O. (2019). Secrecy outage performance analysis of massive MIMO transmission with multiple non-colluding eavesdroppers and partial legitimate user CSI. In: 2019 IEEE 90th vehicular technology conference (VTC2019-Fall) (pp. 1–5).

  22. Shen, H., Xu, W., & Zhao, C. (2015). QoS constrained optimization for multi-antenna AF relaying with multiple eavesdroppers. IEEE Signal Processing Letters, 22(12), 2224–2228.

    Article  Google Scholar 

  23. Bashar, M., Ngo, H. Q., Cumanan, K., Burr, A. G., & Larsson, E. G. (2020). Uplink spectral and energy efficiency of cell-free massive MIMO with optimal uniform quantization. IEEE Transactions on Communications, 69, 223–245.

    Article  Google Scholar 

  24. Zhang, Y., Zhou, M., Qiao, X., Cao, H., & Yang, L. (2019). On the performance of cell-free massive MIMO with low-resolution ADCs. IEEE Access, 7, 117968–117977.

    Article  Google Scholar 

  25. Femenias, G., & Riera-Palou, F. (2020). Fronthaul-constrained cell-free massive MIMO with low resolution ADCs. IEEE Access, 8, 116195–116215.

    Article  Google Scholar 

  26. Femenias, G., & Riera-Palou, F. (2019). Cell-free millimeter-wave massive MIMO systems with limited fronthaul capacity. IEEE Access, 7, 44596–44612.

    Article  Google Scholar 

  27. Zhang, X., Liang, T., An, K., Zheng, G., & Chatzinotas, S. (2021). Secure transmission in cell-free massive MIMO with RF impairments and low-resolution ADCs/DACs. IEEE Transactions on Vehicular Technology, 70(9), 8937–8949.

    Article  Google Scholar 

  28. Zhang, Y., Cao, H., Zhou, M., Qiao, X., & Yang, L. (2019). Rate analysis of cell-free massive MIMO with one-bit ADCs and DACs. In: 2019 IEEE 30th annual international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1–6).

  29. Zhang, X., Liang, T., & An, K. (2021). Secrecy performance analysis of cell-free massive MIMO in the presence of active eavesdropper with low resolution ADCs. Wireless Networks, 27, 4839–4852.

    Article  Google Scholar 

  30. Alageli, M., Ikhlef, A., Alsifiany, F., Abdullah, M., & Chambers, J. (2019). Optimal downlink transmission for cell-free SWIPT massive MIMO systems with active eavesdropping. IEEE Transactions on Information Forensics and Security, 15, 1983–1998.

    Article  Google Scholar 

  31. Timilsina, S., Kudathanthirige, D., & Amarasuriya, G. (2018). Physical layer security in cell-free massive MIMO. IEEE Global Communications Conference (GLOBECOM), 2018, 1–7.

    Google Scholar 

  32. Zhang, J., Dai, L., Sun, S., & Wang, Z. (2016). On the spectral efficiency of massive MIMO systems with low-resolution ADCs. IEEE Communications Letters, 20(5), 842–845.

    Article  Google Scholar 

  33. Bussgang, J. (1952). Crosscorrelation functions of amplitude-distorted Gaussian signals. Electrical Research Lab Technical Report, 16, 3.

    Google Scholar 

  34. Bjornson, E., Hoydis, J., & Sanguinetti, L. (2017). Massive MIMO networks: spectral, energy, and hardware efficiency. Foundations and Trends in Signal Processing, 11(3–4), 154–655.

    Article  Google Scholar 

  35. Rappaport, T. S. (2002). Wireless communications: Principles and practice, 2/E. Prentice Hall PTR.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A

Above all, due to the fact that there is no correlation between the estimated channel and the error of the estimated channel by MMSE algorithm, the channel estimation error can be obtained as \({\tilde{\mathbf{g}}}_{mk}={\mathbf{g}}_{mk}-{\hat{\mathbf{g}}}_{mk}\), \({\tilde{\mathbf{g}}}_{mk}\sim {\mathcal{CN}}(0,\left( {{\beta }_{mk}}-{{\alpha }_{mk}} \right) {{I}_{{{N}_{A}}}})\). According to the formula (21), we handle the normalization constants into the specific forms based on MRT and R-AN technologies, which can be given by

$$\begin{aligned} \begin{aligned} \mu _{m}=\hbox{E}\left\{ tr({{{\mathbf{W}}}_{m}}{\mathbf{W}}_{m}^{H}) \right\} ={{N}_{A}}\sum _{k=1}^{K}{{{\alpha }_{mk}}}, \end{aligned} \end{aligned}$$
(51)
$$\begin{aligned} \begin{aligned} {{\nu }_{m}}=\hbox{E}\left\{ tr({{{\mathbf{S}}}_{m}}{\mathbf{S}}_{m}^{H}) \right\} ={{N}_{A}}, \end{aligned} \end{aligned}$$
(52)

And then, the terms of formula (28) can be calculated by

$$\begin{aligned} \left| D{{S}_{k}} \right|&=\hbox{E}\left\{ \sqrt{\frac{2\theta {{\rho }_{d}}}{\pi }}\sum _{m=1}^{M}{\mu _{m}^{-1/2}{\mathbf{g}}_{mk}^{T}{{\varvec{\omega }}_{mk}}} \right\} \\ &=\sqrt{\frac{2\theta {{\rho }_{d}}}{\pi }}\sum _{m=1}^{M}{\mu _{m}^{-1/2}\hbox{E}\left\{ {\mathbf{g}}_{mk}^{T}{{\varvec{\omega }}_{mk}} \right\} } \\ &=\sqrt{\frac{2\theta {{\rho }_{d}}}{\pi }}\sum _{m=1}^{M}{\mu _{m}^{-1/2}\hbox{E}\left\{ {\hat{\mathbf{g}}}_{mk}^{H}{\hat{\mathbf{g}}}_{mk} \right\} } \\ &=\sqrt{\frac{2{{N}_{A}}\theta {{\rho }_{d}}}{\pi }}\sum _{m=1}^{M}{{{\left( \sum _{k=1}^{K}{{{\alpha }_{mk}}} \right) }^{-1/2}}{{\alpha }_{mk}}}, \end{aligned}$$
(53)
$$\begin{aligned}&E\left\{ {{\left| B{{U}_{k}} \right| }^{2}} \right\} =E\left\{{{\left| \sqrt{\frac{2\theta {{\rho }_{d}}}{\pi }}\sum \limits_{m=1}^{M}{\mu _{m}^{-1/2}{\mathbf{g}}_{mk}^{T}{\varvec{\omega}}_{mk}}-D{{S}_{k}} \right| }^{2}} \right\} \\ &\quad=\frac{2\theta {{\rho }_{d}}}{\pi }\hbox{E}\left\{ {{\left| \sum\limits _{m=1}^{M}{\mu_{m}^{-1/2}{\mathbf{g}}_{mk}^{H}\varvec{{\hat{g}}}_{mk}}-\sum\limits _{m=1}^{M}{\mu _{m}^{-1/2}\hbox{E}\left\{{\hat{\varvec{g}}}_{mk}^{H}{\hat{\varvec{g}}}_{mk} \right\} }\right| }^{2}} \right\} \\ &\quad =\frac{2\theta {{\rho}_{d}}}{\pi }\hbox{E}\left\{ {{\left| \sum \limits _{m=1}^{M}{\mu_{m}^{-1/2}\left({\hat{\varvec{g}}}_{mk}^{H}+{\tilde{\varvec{g}}}_{mk}^{H} \right){\hat{\varvec{g}}}_{mk}} \right| }^{2}} \right\} \\ &\qquad-\frac{2\theta {{\rho }_{d}}}{\pi }{\left( \sum \limits_{m=1}^{M}{{{N}_{A}}\mu _{m}^{-1/2}{{\alpha }_{mk}}} \right) }^{2}\\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum \limits_{m=1}^{M}{\mu _{m}^{-1}\hbox{E}\left\{ {{\left|{\hat{\varvec{g}}}_{mk}^{H}{\hat{\varvec{g}}}_{mk} \right| }^{2}}\right\} } \\ &\qquad +\frac{4\theta {{\rho }_{d}}}{\pi}\hbox{E}\left\{ \sum \limits _{m=1}^{M}{\sum \limits _{n\ne m}{\mu_{m}^{-1/2}\mu _{n}^{-{\scriptstyle{}^{1}/{}_{2}}}{\hat{\varvec{g}}}_{mk}^{H}{\hat{\varvec{g}}}_{mk}}{\hat{\varvec{g}}}_{nk}^{H}{\hat{\varvec{g}}}_{nk}}\right\} \\ &\qquad +\frac{2\theta {{\rho }_{d}}}{\pi }\sum\limits _{m=1}^{M}{\mu _{m}^{-1}\hbox{E}\left\{ {{\left|{\tilde{\varvec{g}}}_{mk}^{H}{\hat{\varvec{g}}}_{mk} \right| }^{2}}\right\} }-\frac{2\theta {{\rho }_{d}}}{\pi }{{\left( \sum \limits_{m=1}^{M}{{{N}_{A}}\mu _{m}^{-{\scriptstyle {}^{1}/{}_{2}}}{{\alpha}_{mk}}} \right) }^{2}} \\ &\quad =\frac{2\theta {{\rho}_{d}}}{\pi }\sum \limits _{m=1}^{M}{N_{A}^{2}\mu _{m}^{-1}\alpha_{mk}^{2}+}\frac{4\theta {{\rho }_{d}}}{\pi }\sum \limits_{m=1}^{M}{\sum \limits _{n\ne m}{N_{A}^{2}\mu _{m}^{-1/2}\mu_{n}^{-1/2}{{\alpha }_{mk}}{{\alpha }_{nk}}}} \\ &\qquad+\frac{2\theta {{\rho }_{d}}}{\pi }\sum \limits _{m=1}^{M}{\mu_{m}^{-1}{{N}_{A}}\alpha _{mk}^{2}+}\frac{2\theta {{\rho }_{d}}}{\pi}\sum \limits _{m=1}^{M}{{{N}_{A}}\mu _{m}^{-1}{{\alpha}_{mk}}\left( {{\beta }_{mk}}-{{\alpha }_{mk}} \right) } \\&\qquad -\frac{2\theta {{\rho }_{d}}}{\pi }{{\left( \sum \limits_{m=1}^{M}{{{N}_{A}}\mu _{m}^{-1/2}{{\alpha }_{mk}}} \right) }^{2}}\\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum \limits_{m=1}^{M}{{{\left( \sum \limits _{{k}'=1}^{K}{{{\alpha }_{m{k}'}}}\right) }^{-1}}{{\alpha }_{mk}}{{\beta }_{mk}}}, \end{aligned}$$
(54)
$$\begin{aligned} \hbox{E}\left\{ {{\left| U{{I}_{k{k}'}} \right| }^{2}} \right\}&=\frac{2\theta {{\rho }_{d}}}{\pi }\hbox{E}\left\{ {{\left| \sum _{m=1}^{M}{\mu _{m}^{-{1}/{2}}{\mathbf{g}}_{mk}^{T}{{\varvec{\omega }}_{m{k}'}}} \right| }^{2}} \right\} \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\hbox{E}\left\{ {{\left| \sum _{m=1}^{M}{\mu _{m}^{-{1}/{2}}{\mathbf{g}}_{mk}^{H}{\hat{\mathbf{g}}}_{m{k}'}} \right| }^{2}} \right\} \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\mu _{m}^{-1}\hbox{E}\left\{ {{\left| {\mathbf{g}}_{mk}^{H}{\hat{\mathbf{g}}}_{m{k}'} \right| }^{2}} \right\} } \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{{{\left( \sum _{{{k}'}'=1}^{K}{{{\alpha }_{m{{k}'}'}}} \right) }^{-1}}{{\alpha }_{m{k}'}}{{\beta }_{mk}}}, \end{aligned}$$
(55)
$$\begin{aligned} \hbox{E}\left\{ {{\left| A{{N}_{k}} \right| }^{2}} \right\}&=\frac{2\left( 1-\theta \right) {{\rho }_{d}}}{\pi }\hbox{E}\left\{ {{\left| \sum _{m=1}^{M}{\nu _{m}^{-{1}/{2}}{\mathbf{g}}_{mk}^{T}{{{\mathbf{S}}}_{m}}{{{\mathbf{n}}}_{m}}} \right| }^{2}} \right\} \\ &\quad =\frac{2\left( 1-\theta \right) {{\rho }_{d}}}{\pi {{N}_{A}}}\sum _{m=1}^{M}{\hbox{E}\left\{ {{\left| {\mathbf{g}}_{mk}^{T}{{{\mathbf{S}}}_{m}}{{{\mathbf{n}}}_{m}} \right| }^{2}} \right\} } \\ &\quad =\frac{2\left( 1-\theta \right) {{\rho }_{d}}}{\pi {{N}_{A}}}\sum _{m=1}^{M}{\hbox{E}\left\{ {\mathbf{g}}_{mk}^{H}{{{\mathbf{S}}}_{m}}{{{\mathbf{n}}}_{m}}{\mathbf{n}}_{m}^{H}{\mathbf{S}}_{m}^{H}{\mathbf{g}}_{mk} \right\} } \\ &\quad =\frac{2\left( 1-\theta \right) {{\rho }_{d}}}{\pi {{N}_{A}}}\sum _{m=1}^{M}{\hbox{E}\left\{ tr\left( {\mathbf{g}}_{mk}{\mathbf{g}}_{mk}^{H} \right) \right\} } \\ &\quad =\frac{2\left( 1-\theta \right) {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{{{\beta }_{mk}}}, \end{aligned}$$
(56)
$$\begin{aligned} \hbox{E}\left\{ {{\left| Q{{N}_{k}} \right| }^{2}} \right\}&=\frac{{{\rho }_{d}}}{{{N}_{A}}}\hbox{E}\left\{ {{\left| \sum _{m=1}^{M}{{\mathbf{g}}_{mk}^{T}{{{\mathbf{q}}}_{d,m}}} \right| }^{2}} \right\} \\ &\quad =\frac{{{\rho }_{d}}}{{{N}_{A}}}\sum _{m=1}^{M}{\hbox{E}\left\{ {{\left| {\mathbf{g}}_{mk}^{T}{{{\mathbf{q}}}_{d,m}} \right| }^{2}} \right\} } \\ &\quad =\frac{{{\rho }_{d}}}{{{N}_{A}}}\sum _{m=1}^{M}{\hbox{E}\left\{ {\mathbf{g}}_{mk}^{H}{{{\mathbf{q}}}_{d,m}}{\mathbf{q}}{{_{d,m}^{H}}}{\mathbf{g}}_{mk} \right\} } \\ &\quad =\frac{{{\rho }_{d}}}{{{N}_{A}}}\sum _{m=1}^{M}{\hbox{E}\left\{ tr\left( {\mathbf{g}}_{mk}{\mathbf{g}}_{mk}^{H}{{{\mathbf{q}}}_{d,m}}{\mathbf{q}}{{_{d,m}^{H}}} \right) \right\} } \\ &\quad =\left( 1-\frac{2}{\pi } \right) {{\rho }_{d}}\sum _{m=1}^{M}{{{\beta }_{mk}}}, \end{aligned}$$
(57)

Plugging these results into the formula (29) and (30), the achievable rates of legitimate users in the case of one-bit ADCs and DACs can be obtained. And the derivations of the other three cases can be acquired in the same way, which will not be repeated here.

Appendix B

According to the formula (39), we can get

$$\begin{aligned} \hbox{E}\left\{ SIN{{R}_{Ei}} \right\} =\hbox{E}\left\{ {{\mathbf{D}}}{{\mathbf{S}}}_{Ei}^{H}{{\mathbf{\Theta }}^{-1}}{\mathbf{D}}{{{\mathbf{S}}}_{Ei}} \right\} , \end{aligned}$$
(58)

where

$$\begin{aligned} \Theta&=\sum _{{k}'\ne k}^{K}{\hbox{E}\left\{ {{\mathbf{U}}}{{\mathbf{I}}}_{Ei,k{k}'}{{\mathbf{U}}}{{\mathbf{I}}}_{Ei,k{k}'}^{H} \right\} }+\hbox{E}\left\{ {{\mathbf{A}}}{{\mathbf{N}}}_{Ei}{{\mathbf{A}}}{{\mathbf{N}}}_{Ei}^{H} \right\} \\ &\quad +\hbox{E}\left\{ {{\mathbf{Q}}}{{\mathbf{N}}}_{Ei}{{\mathbf{Q}}}{{\mathbf{N}}}_{Ei}^{H} \right\} +\sigma _{d}^{2}{{{\mathbf{I}}}_{{{N}_{E}}}}, \end{aligned}$$
(59)

And each term is deduced as follows:

$$\begin{aligned}&\hbox{E}\left\{ {{\mathbf{D}}}{{\mathbf{S}}}_{Ei}^{H}{\mathbf{D}}{{{\mathbf{S}}}_{Ei}} \right\} \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\mu _{m}^{-1}tr\left( \hbox{E}\left\{ {{{\varvec{{\hat{g}}}}}_{m{{k}_{0}}}}{\hat{\mathbf{g}}}_{m{{k}_{0}}}^{H}{\mathbf{G}}_{mEi}{\mathbf{G}}_{mEi}^{H} \right\} \right) } \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\mu _{m}^{-1}tr\left( \hbox{E}\left\{ {{{\varvec{{\hat{g}}}}}_{m{{k}_{0}}}}{\hat{\mathbf{g}}}_{m{{k}_{0}}}^{H}{\mathbf{G}}_{mEi}{\mathbf{G}}_{mEi}^{H} \right\} \right) } \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\mu _{m}^{-1}tr\left( \hbox{E}\left\{ {{{\varvec{{\hat{g}}}}}_{m{{k}_{0}}}}{\hat{\mathbf{g}}}_{m{{k}_{0}}}^{H} \right\} \hbox{E}\left\{ {\mathbf{G}}_{mEi}{\mathbf{G}}_{mEi}^{H} \right\} \right) } \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\mu _{m}^{-1}tr\left( {{N}_{E}}{{\beta }_{mEi}}{{\alpha }_{m{{k}_{0}}}}{{{\mathbf{I}}}_{{{N}_{A}}}} \right) } \\ &\quad =\frac{2{{N}_{E}}\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{{{\left( \sum _{{k}'=1}^{K}{{{\alpha }_{m{k}'}}} \right) }^{-1}}{{\beta }_{mEi}}{{\alpha }_{m{{k}_{0}}}}}, \end{aligned}$$
(60)
$$\begin{aligned}&\hbox{E}\left\{ {{\mathbf{U}}}{{\mathbf{I}}}_{Ei,k{k}'}{{\mathbf{U}}}{{\mathbf{I}}}_{Ei,k{k}'}^{H} \right\} \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\hbox{E}\left\{ \sum _{m=1}^{M}{\mu _{m}^{-1}{\mathbf{G}}_{mEi}^{H}{{{\varvec{{\hat{g}}}}}_{m{k}'}}\varvec{{\hat{g}}}{{_{mk}^{H}}_{m{k}'}}{\mathbf{G}}_{mEi}} \right\} \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\mu _{m}^{-1}\hbox{E}\left\{ {\mathbf{G}}_{mEi}^{H}\hbox{E}\left\{ {{{\varvec{{\hat{g}}}}}_{m{k}'}}\varvec{{\hat{g}}}{{_{mk}^{H}}_{m{k}'}} \right\} {\mathbf{G}}_{mEi} \right\} } \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\mu _{m}^{-1}{{\alpha }_{m{k}'}}\hbox{E}\left\{ {\mathbf{G}}_{mEi}^{H}{{{\mathbf{I}}}_{{{N}_{A}}}}{\mathbf{G}}_{mEi} \right\} } \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\mu _{m}^{-1}{{N}_{A}}{{\beta }_{mEi}}{{\alpha }_{m{k}'}}}{{{\mathbf{I}}}_{{{N}_{E}}}} \\ &\quad =\frac{2\theta {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{{{\left( \sum _{{{k}'}'=1}^{K}{{{\alpha }_{m{{k}'}'}}} \right) }^{-1}}{{\beta }_{mEi}}{{\alpha }_{m{k}'}}}{{{\mathbf{I}}}_{{{N}_{E}}}}, \end{aligned}$$
(61)
$$\begin{aligned}&\hbox{E}\left\{ {{\mathbf{A}}}{{\mathbf{N}}}_{Ei}{{\mathbf{A}}}{{\mathbf{N}}}_{Ei}^{H} \right\} \\ &\quad =\frac{2\left( 1-\theta \right) {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\hbox{E}\left\{ {\mathbf{G}}_{mEi}^{H}{{{\mathbf{S}}}_{m}}{{{\mathbf{n}}}_{m}}{{\left( {{{\mathbf{S}}}_{m}}{{{\mathbf{n}}}_{m}} \right) }^{H}}{\mathbf{G}}_{mEi} \right\} } \\ &\quad =\frac{2\left( 1-\theta \right) {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{\hbox{E}\left\{ {\mathbf{G}}_{mEi}^{H}\hbox{E}\left\{ {{{\mathbf{S}}}_{m}}{{{\mathbf{n}}}_{m}}{{\left( {{{\mathbf{S}}}_{m}}{{{\mathbf{n}}}_{m}} \right) }^{H}} \right\} {\mathbf{G}}_{mEi} \right\} } \\ &\quad =\frac{2{{N}_{A}}\left( 1-\theta \right) {{\rho }_{d}}}{\pi }\sum _{m=1}^{M}{{{\beta }_{mEi}}}{{{\mathbf{I}}}_{{{N}_{E}}}}, \end{aligned}$$
(62)
$$\begin{aligned}\hbox{E}\left\{ {{\mathbf{Q}}}{{\mathbf{N}}}_{Ei}{{\mathbf{Q}}}{{\mathbf{N}}}_{Ei}^{H} \right\} &=\frac{{{\rho }_{d}}}{{{N}_{A}}}\sum _{m=1}^{M}{\hbox{E}\left\{ {\mathbf{G}}_{mEi}^{H}{{{\mathbf{q}}}_{d,m}}{\mathbf{q}}_{d,m}^{H}{\mathbf{G}}_{mEi} \right\} } \\ &=\frac{{{\rho }_{d}}}{{{N}_{A}}}\sum _{m=1}^{M}{\hbox{E}\left\{ {\mathbf{G}}_{mEi}^{H}\hbox{E}\left\{ {{{\mathbf{q}}}_{d,m}}{\mathbf{q}}_{d,m}^{H} \right\} {\mathbf{G}}_{mEi} \right\} } \\ &=\left( 1-\frac{2}{\pi } \right) {{\rho }_{d}}\sum _{m=1}^{M}{{{\beta }_{mEi}}}{{{\mathbf{I}}}_{{{N}_{E}}}}, \end{aligned}$$
(63)

Substituting the above results into the formulas (39) and (58), we can obtain the Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Gao, Y., Zhang, X. et al. Secure transmission in one-bit cell-free massive MIMO system with multiple non-colluding eavesdroppers. Wireless Netw 28, 2951–2966 (2022). https://doi.org/10.1007/s11276-022-03012-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03012-x

Keywords

Navigation