[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Beam-shaping technique for plasma magneto-electric dipole planar array based on time-modulation and particle swarm optimization

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, an approach for the synthesis of desired pattern in 4D antenna linear and planar arrays is proposed, taking into account practical element models. The element of the array is a plasma ME-dipole operating in the band 1.3–3.65 GHz with circular polarization characteristics of 13.3%, from 2.2 GHz to 2.52 GHz with 95% radiation efficiency. A linear arrangement of 16-element spaced by 0.65λ connected with 16 RF-switches with periodic switching frequency of 100 MHz is investigated using different switching time sequences. A planar array consists of 8 × 8 plasma ME-dipoles are designed for different beam shapes. The approach is based on the combination of the particle optimization technique (PSO) and the full-wave simulation using the finite integral technique (FIT). The time sequences are optimized by the PSO algorithm and the patterns at the fundamental frequency and sideband frequencies are synthesized and exported automatically to the array analyzes using the FIT technique. The time-domain excitations can be decomposed into a Fourier series in frequency-domain, thus obtaining equivalent complex excitation distributions at different frequencies. This paper introduces the applicability of planar array in the beam-shaping. Chebyshev, Taylor and binomial planar array are presented. This paper focuses on the pattern synthesis of 4D planar arrays taking into account the mutual coupling between the elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

There are no supplementary materials, and the data is available upon reasonable request.

Code availability

The program is available upon request

References

  1. Haykin, S. S., & Moher, M. (2011). Modern wireless communications. Pearson Education India.

    Google Scholar 

  2. Xiang, W., Zheng, K., & Shen, X. S. (2016). 5G mobile communications. Springer.

    Google Scholar 

  3. Nguyen, A. H., Cho, J.-H., Bae, H.-J., & Sung, H.-K. (2020). Side-lobe level reduction of an optical phased array using amplitude and phase modulation of array elements based on optically injection-locked semiconductor lasers. Photonics, 7(1), 20.

    Article  Google Scholar 

  4. Haupt, R. L. (2010). Antenna arrays: A computational approach. John Wiley & Sons.

    Book  Google Scholar 

  5. Allard, R. J., Werner, D. H., & Werner, P. L. (2003). Radiation pattern synthesis for arrays of conformal antennas mounted on arbitrarily-shaped three-dimensional platforms using genetic algorithms. IEEE transactions on antennas and propagation, 51(5), 1054–1062.

    Article  Google Scholar 

  6. Hakkarainen, A., Werner, J., Dandekar, K. R., & Valkama, M. (2013). Widely-linear beamforming and RF impairment suppression in massive antenna arrays. Journal of Communications and Networks, 15(4), 383–397.

    Article  Google Scholar 

  7. Li, M., Zhang, Z., Tang, M.-C., Yi, Da., & Ziolkowski, R. W. (2020). Compact series-fed microstrip patch arrays excited with Dolph-chebyshev distributions realized with slow wave transmission line feed networks. IEEE Transactions on Antennas and Propagation, 68(12), 7905–7915.

    Article  Google Scholar 

  8. Rao, N. A., Kanapala, S., & Sekhar, M. (2019). Wideband circular polarized binomial antenna array for L-band radar. In G. Panda, S. Satapathy, B. Biswal, & R. Bansal (Eds.), Microelectronics, electromagnetics and telecommunications (pp. 279–287). Springer.

    Chapter  Google Scholar 

  9. Sarker, M. A., Hossain, M. S., & Masud, M. S. (2016). Robust beamforming synthesis technique for low side lobe level using Taylor excited antenna array. In: 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), pp. 1–4. IEEE.

  10. Cen, L., Zhu Liang, Y., Ser, W., & Cen, W. (2011). Linear aperiodic array synthesis using an improved genetic algorithm. IEEE Transactions on Antennas and Propagation, 60(2), 895–902.

    Article  MathSciNet  Google Scholar 

  11. Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153–165.

    Article  Google Scholar 

  12. Bogdan, G., Yashchyshyn, Y., & Jarzynka, M. (2016). Time-modulated antenna array with lossless switching network. IEEE Antennas and Wireless Propag. Lett., 15, 1827–1830.

    Article  Google Scholar 

  13. He, C., Wang, L., Chen, J., & Jin, R. (2018). Time-modulated arrays: A four-dimensional antenna array controlled by switches. Journal of Communications and Information Networks, 3(1), 1–14.

    Article  Google Scholar 

  14. Chakraborty, A., Ram, G., & Mandal, D. (2021). Multibeam steered pattern synthesis in time-modulated antenna array with controlled harmonic radiation. International Journal of RF and Microwave Computer‐Aided Engineering, 31(5), e22597.

    Article  Google Scholar 

  15. Zainud-Deen, A. S., Malhat, H. A., Badway, M. M., & Rihan, M. (2021). Full-wave simulation of time-modulated parabolic linear array using the method of moments. In: 38th National Radio Science Conference (NRSC), Egypt, B4.

  16. Tennant, A., & Chambers, B. (2007). A two-element time-modulated array with direction-finding properties. IEEE Antennas Wirelss Propag. Lett., 6, 64–65.

    Article  Google Scholar 

  17. Maneiro-Catoira, R., Bregains, J., Garcia-Naya, J. A., & Castedo, L. (2020). Time-modulated array beamforming with periodic stair-step pulses. Signal Processing, 166, 107247.

    Article  Google Scholar 

  18. Jozef, M., Yashchyshyn, Y., & Bogdan. G. (2019). 4D antennas design and technology–the state of the art. In: 2019 IEEE MTT-S International Wireless Symposium (IWS), pp. 1–3. IEEE.

  19. Qun, W.B. (2016). Design of magneto-electric dipole antennas, Ph.D. thesis, Dept. of Elect. Eng. City, University of Hong Kong.

  20. Feng, B., Hong, W., Li, S., An, W., & Yin, S. (2013). A dual-wideband double-layer magneto electric dipole antenna with a modified horned reflector for 2G/3G/LTE applications. International Journal of Antennas and Propagation, 2013, 1–9.

    Article  Google Scholar 

  21. Malhat, H. A., & Zainud-Deen, S. H. (2020). Plasma-based artificial magnetic conductor for polarization reconfigurable dielectric resonator antenna. Plasmonics, 15(5), 1913–1924.

    Article  Google Scholar 

  22. Li, M., & Luk, K. (2015). Wideband magneto electric dipole antennas with dual polarization and circular polarization. IEEE Antennas and Propag. Magazine, 57(1), 110–119.

    Article  Google Scholar 

  23. Anderson, T. (2011). Plasma antennas. Artech House.

    Google Scholar 

  24. Zainud-Deen, S. H., Malhat, H. A., & Shabayek, N. A. (2020). Reconfigurable RCS reduction from curved structures using plasma based FSS. Plasmonics, 15(12), 1–10.

    Google Scholar 

  25. Zainud-Deen, S. H., El-shalaby, N. A., Malhat, H. A., & Gaber, S. M. (2019). Reconfigurable multi-turns planar plasma helical antenna. Plasmonics, 14(6), 1831–1837.

    Article  Google Scholar 

  26. Zainud-Deen, S. H., & Malhat, H. A. (2019). Electronic beam switching of circularly polarized plasma magneto-electric dipole array with multiple beams. Plasmonics, 14(4), 881–890.

    Article  Google Scholar 

  27. Baklanov, Y. V. (1966). Chebyshev distribution of currents for a plane array of radiators. Radio Engineering and Electronics Physics, 11, 640–642.

    Google Scholar 

  28. Tseng, F. I., & Cheng, D. K. (1968). Optimum scannable planar arrays with an invariant sidelobe level. Proceedings of the IEEE, 56, 1771–1778.

    Article  Google Scholar 

Download references

Funding

There is No funds, grants, or other support was received to conduit this study.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contribute equally in this paper.

Corresponding author

Correspondence to Hend Abd El-Azem Malhat.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or competing interests to declare that are relevant to the content of this article.

Ethical approval

There is no ethical approval is required. 'Not applicable'.

Consent to participate

Informed consent was obtained from all individual participants included in the study. 'Not applicable'.

Consent for publication

Authors are responsible for correctness of the statements provided in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhat, H.A.EA., Zainud-Deen, A.S. Beam-shaping technique for plasma magneto-electric dipole planar array based on time-modulation and particle swarm optimization. Wireless Netw 28, 3001–3018 (2022). https://doi.org/10.1007/s11276-022-03001-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03001-0

Keywords

Navigation