Abstract
Online education is popular for its flexibility and high accessibility. The transactions of educational multimedia data resources can effectively promote the development of educational informatization and solve the island situation of educational resources. However, educational resources may be facing severe illegal redistribution. And the copyright is not well protected. In most of existing transaction schemes for educational multimedia data, there is always a centralized third party, which may lead to dispute, distrust, or privacy issues. In this paper, we propose a fair and accountable trading scheme for educational multimedia data based on blockchain. We combine anti-collusion code named BIBD-ACC and asymmetric fingerprinting technology to achieve a relatively strong copyright protection. To realize a fair trading, we implement a smart contract with a reasonable pricing model. In addition, we leverage TEE to solve the privacy issues of public chain and IPFS to mitigate the storage cost of the blockchain. We implemented and evaluated the scheme in Ethereum. The results show that our scheme can achieve well copyright protection and preserve the users’ privacy. The overall overhead is reasonable.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
MOOCs. (2022). Retrieved March 18, 2022, from http://mooc.org/.
Coursera. (2022). Retrieved March 18, 2022, from https://www.coursera.org/.
XuetangX. (2022). Retrieved March 18, 2022, from http://www.xuetangx.com/global.
Zhao, H.L., Xu, Y.P., Yang, Y. (2014). Technology research of mobile internet digital rights management security authorization. In Proceedings of the 19th national youth communication academic conference (pp. 299–309).
Shen, J. (2021). Blockchain technology and its applications in digital content copyright protection. In Proceedings of the 4th international conference on economic management and green development (pp. 18–25). Springer.
Xianxian, L., Jiahui, P., Zhenkui, S., & Chunpei, L. (2021) Achieving fair and accountable data trading scheme for educational multimedia data based on blockchain. QSHINE 111–125.
Savelyev, A. (2018). Copyright in the blockchain era: Promises and challenges. Computer Law Security Review, 34(3), 550–561.
Tulyakov, S., Farooq, F., & Govindaraju, V. (2005). Symmetric hash functions for fingerprint minutiae. In International conference on pattern recognition and image analysis (pp. 30–38). Springer.
Charpentier, A., Fontaine, C., Furon, T., et al. (2011) An asymmetric fingerprinting scheme based on Tardos codes. In International workshop on information hiding (pp. 43–58). Springer.
Farooq, F., Bolle, R. M., & Jea, T. Y, et al. (2007). Anonymous and revocable fingerprint recognition. In 2007 IEEE conference on computer vision and pattern recognition (pp. 1–7). IEEE.
Qureshi, A., Megias, D., & Rifa-Pous, H. (2015). Framework for preserving security and privacy in peer-to-peer content distribution systems. Expert Systems with Applications, 42(3), 1391–1408.
Liu, Q., Safavi-Naini, R., & Sheppard, N. P. (2003) Digital rights management for content distribution. In Proceedings of the Australasian information security workshop conference on ACSW frontiers 2003 (Vol. 21, pp. 49–58).
Ma, Z., Jiang, M., Gao, H., et al. (2018). Blockchain for digital rights management. Future Generation Computer Systems, 89, 746–764.
Kenny, S., & Korba, L. (2002). Applying digital rights management systems to privacy rights management. Computers Security, 21(7), 648–664.
Nakamoto, S. (2019). Bitcoin: A peer-to-peer electronic cash system. Manubot.
Mermer, G. B., Zeydan, E., & Arslan, S. S. (2018) . An overview of blockchain technologies: Principles, opportunities and challenges. In 2018 26th signal processing and communications applications conference (SIU) (pp. 1–4). IEEE.
Fullmer, D., & Morse, A. S. (2018). Analysis of difficulty control in bitcoin and proof-of-work blockchains. In 2018 IEEE conference on decision and control (CDC) (pp. 5988–5992). IEEE.
Castro, M., & Liskov, B. (1999). Practical byzantine fault tolerance. OSDI, 99, 173–186.
Zhang, C., Guo, Y., & Du, H. et al. (2020). Pfcrowd: Privacy-preserving and federated crowdsourcing framework by using blockchain. In 2020 IEEE/ACM 28th international symposium on quality of service (IWQoS) (pp. 1–10). IEEE.
Guo, Y., Xie, H., & Miao, Y., et al. (2020). Fedcrowd: A federated and privacy-preserving crowdsourcing platform on blockchain. IEEE Transactions on Services Computing.
Zhang, C., Guo, Y., Jia, X., et al. (2021). Enabling proxy-free privacy-preserving and federated crowdsourcing by using blockchain. IEEE Internet of Things Journal, 8(8), 6624–6636.
Wang, M., Guo, Y., & Zhang, C., et al. (2021). MedShare: a privacy-preserving medical data sharing system by using blockchain. IEEE Transactions on Services Computing.
Li, Z., Kang, J., Yu, R., et al. (2017). Consortium blockchain for secure energy trading in industrial internet of things. IEEE Transactions on Industrial Informatics, 14(8), 3690–3700.
Gai, K., Wu, Y., Zhu, L., et al. (2019). Privacy-preserving energy trading using consortium blockchain in smart grid. IEEE Transactions on Industrial Informatics, 15(6), 3548–3558.
Aitzhan, N. Z., & Svetinovic, D. (2016). Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Transactions on Dependable and Secure Computing, 15(5), 840–852.
Hu, D., Li, Y., Pan, L., et al. (2021). A blockchain-based trading system for big data. Computer Networks, 191, 107994.
Sheng, D., Xiao, M., & Liu A, et al. (2020). CPchain: A copyright-preserving crowdsourcing data trading framework based on blockchain. In 2020 29th international conference on computer communications and networks (ICCCN) (pp. 1–9). IEEE.
Dai, W., Dai, C., Choo, K. K. R., et al. (2019). SDTE: A secure blockchain-based data trading ecosystem. IEEE Transactions on Information Forensics and Security, 15, 725–737.
Ren, K., Guo, Y., & Li, J., et al. (2020). Hybridx: New hybrid index for volume-hiding range queries in data outsourcing services. In 2020 IEEE 40th international conference on distributed computing systems (ICDCS) (pp. 23–33). IEEE.
Cai, C., Zheng, Y., Du, Y., et al. (2019). Towards private, robust, and verifiable crowdsensing systems via public blockchains. IEEE Transactions on Dependable and Secure Computing, 18(4), 1893–1907.
Duan, H., Zheng, Y., & Du, Y., et al. (2019). Aggregating crowd wisdom via blockchain: A private, correct, and robust realization. In 2019 IEEE international conference on pervasive computing and communications (PerCom) (pp. 1–10). IEEE.
Zhaoxiong, M., Tetsuya, M., & Sumiko, M. (2018). Hirotsugu kinoshita: Design scheme of copyright management system based on digital watermarking and blockchain. COMPSAC, 2, 359–364.
Huang, C., Liu, D., Ni, J., et al. (2020). Achieving accountable and efficient data sharing in industrial internet of things. IEEE Transactions on Industrial Informatics, 17(2), 1416–1427.
Chen, Z., Wang, Y., & Ni, T., et al. (2020). DCDChain: A credible architecture of digital copyright detection based on blockchain. arXiv preprint arXiv:2010.01235
Qureshi, A., & Megias, D. (2019) . Blockchain-based P2P multimedia content distribution using collusion-resistant fingerprinting. In 2019 Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC) (pp. 1606–1615). IEEE.
Kuribayashi, M., & Funabiki, N. (2019). Decentralized tracing protocol for fingerprinting system. APSIPA Transactions on Signal and Information Processing 8.
Underwood, S. (2016). Blockchain beyond bitcoin. Communications of the ACM, 59(11), 15–17.
Boneh, D., & Shaw, J. (1998). Collusion-secure fingerprinting for digital data. IEEE Transactions on Information Theory, 44(5), 1897–1905.
Engle, S. (2005). Fingerprinting and the marking assumption. Ecs228 cryptography for E-commerce.
Wade, T., Min, W. Z., Jane, W., et al. (2003). Anti-collusion-fingerprinting-for-multimedia. IEEE Transactions on Signal Processing, 51(4), 1069–1087.
Brasser, F., Müller, U., & Dmitrienko A., et al. (2017). Software grand exposure: SGX cache attacks are practical. In 11th USENIX workshop on offensive technologies (WOOT 17).
Bowman, M., et al. (2018). Private data objects: An overview. arXiv preprint arXiv:1807.05686
Benet J. (2014). Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561
Rubinstein, A. (1982) . Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econometric Society 97–109.
Acknowledgements
The work is partially supported by the National Natural Science Foundation of China (No. 61672176), the Guangxi “Bagui Scholar” Teams for Innovation and Research Project, the Guangxi Science and technology project (GuikeAA22067070 and GuikeAD21220114), the Center for Applied Mathematics of Guangxi (Guangxi Normal University), the Guangxi Talent Highland Project of Big Data Intelligence and Application, the Guangxi Science and Technology Plan Projects No. AD20159039, the Guangxi Young and Middle-aged Ability Improvement Project No. 2020KY02032, the Innovation Project of Guangxi Graduate Education (No. YCBZ2021038).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, X., Peng, J., Gao, S. et al. Achieving fair and accountable data trading for educational multimedia data based on blockchain. Wireless Netw 30, 4389–4401 (2024). https://doi.org/10.1007/s11276-022-03042-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-022-03042-5