[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Channel selection observation period length analysis under different channel service rates

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In wireless communication, the sender needs to select an optimal wireless channel from several available ones. However, the instantaneous channel state is time-varying with unknown statistics. Therefore, the channel selection must be based on channel observation. Before the packet arrives, the sender needs to observe the channel state in the observation period. And then the sender transmits packets through the best channel. Observation needs cost time. We investigate the trade-off between the observation period and transmission period. A short observation period usually leads to wrong selection while long observation might waste time. Our simulation results show that there is an optimal length of observation period. The total transmission time experience a sharp decrease before the optimal point. The longer observation does not cause an obvious increase in transmission time. We analyze how the observation time affects the transmission time to explain the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang, D., Huo, L., Lv, Z., Song, H., & Qin, W. (2018). A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Transactions on Intelligent Transportation Systems, 19(10), 3305–3319.

    Article  Google Scholar 

  2. Jiang, D., Wang, Y., Lv, Z., Qi, S., & Singh, S. (2020). Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Transactions on Industrial Informatics, 16(2), 1310–1320.

    Article  Google Scholar 

  3. Wang, Z., Jiang, D., Zhang, Z., et al. (2021). A polymorphic heterogeneous security architecture for edge-enabled smart grid. Sustainable Cities and Society, 67(4), 1-16.

    Google Scholar 

  4. Zhang, K., Chen, L., An, Y., et al. (2019). A QoE test system for vehicular voice cloud services. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01415-3

    Article  Google Scholar 

  5. Jiang, D., Wang, W., Shi, L., & Song, H. (2020). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 7(1), 507–519.

    Article  MathSciNet  Google Scholar 

  6. Jiang, D., Wang, F., Lv, Z., et al. (2021). QoE-Aware efficient content distribution scheme for satellite-terrestrial networks. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2021.3074917.

    Article  Google Scholar 

  7. Jiang, D., Wang, Z., Huo, L., & Xie, S. (2021). A performance measurement and analysis method for software-defined networking of IoV. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3707-3719.

    Article  Google Scholar 

  8. Jiang, D., Wang, Z., Wang, W., Lv, Z., & Choo, K. -K. R. (2021). AI-assisted energy-efficient and intelligent routing for reconfigurable wireless networks. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2021.3075428.

    Article  Google Scholar 

  9. Chen, L., Jiang, D., Song, H., Wang, P., Bao, R., Zhang, K., & Li, Y. (2018). A lightweight end-side user experience data collection system for quality evaluation of multimedia communications. IEEE Access, 6(1), 15408–15419.

    Article  Google Scholar 

  10. Chen, L., & Zhang, L. (2020). Spectral efficiency analysis for massive MIMO system under QoS constraint: An effective capacity perspective. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01414-4

    Article  Google Scholar 

  11. Chen, L., Jiang, D., Bao, R., Xiong, J., Liu, F., & Bei, L. (2017). MIMO Scheduling effectiveness analysis for bursty data service from view of QoE. Chinese Journal of Electronics, 26(5), 1079–1085.

    Article  Google Scholar 

  12. Jiang, D., Wang, Y., Lv, Z., Wang, W., & Wang, H. (2020). An energy-efficient networking approach in cloud services for IIoT networks. IEEE Journal on Selected Areas in Communications, 38(5), 928–941.

    Article  Google Scholar 

  13. Jiang, D., Zhang, P., Lv, Z., et al. (2016). Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things Journal, 3(6), 1437–1447.

    Article  Google Scholar 

  14. Jiang, D., Huo, L., Zhang, P., & Lv, Z. (2021). Energy-efficient heterogeneous networking for electric vehicles networks in smart future cities. IEEE Transactions on Intelligent Transportation Systems, 22(3), 1868-1880.

    Article  Google Scholar 

  15. Bao, R., Chen, L., & Cui, P. (2019). User behavior and user experience analysis for social network services. Wireless Networks. https://doi.org/10.1007/s11276-019-02233-x

    Article  Google Scholar 

  16. Jiang, D., Huo, L., & Song, H. (2020). Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Transactions on Network Science and Engineering, 7(1), 80–90.

    Article  MathSciNet  Google Scholar 

  17. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE, 13(5), 1–23.

    Google Scholar 

  18. Huo, L., Jiang, D., Qi, S., et al. (2021). An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mobile Networks and Applications, 2021(26), 575–585.

    Article  Google Scholar 

  19. Tan, J., Xiao, S., Han, S., Liang, Y., & Leung, V. C. M. (2019). QoS-aware user association and resource allocation in LAA-LTE/WiFi coexistence systems. IEEE Transactions on Wireless Communications, 18(4), 2415–2430.

    Article  Google Scholar 

  20. Wang, Y., Tang, X., & Wang, T. (2019). A unified QoS and security provisioning framework for wiretap cognitive radio networks: A statistical queueing analysis approach. IEEE Transactions on Wireless Communications, 18(3), 1548–1565.

    Article  Google Scholar 

  21. Hassan, M. Z., Hossain, M. J., Cheng, J., & Leung, V. C. M. (2020). Hybrid RF/FSO backhaul networks with statistical-QoS-aware buffer-aided relaying. IEEE Transactions on Wireless Communications, 19(3), 1464–1483.

    Article  Google Scholar 

  22. Zhang, Z., Wang, R., Yu, F. R., Fu, F., & Yan, Q. (2019). QoS aware transcoding for live streaming in edge-clouds aided hetnets: An enhanced actor-critic approach. IEEE Transactions on Vehicular Technology, 68(11), 11295–11308.

    Article  Google Scholar 

  23. Barakabitze, A. A., et al. (2020). QoE management of multimedia streaming services in future networks: A tutorial and survey. IEEE Communications Surveys & Tutorials, 22(1), 526–565.

    Article  Google Scholar 

  24. Orsolic, I., & Skorin-Kapov, L. (2020). Framework for in-network QoE monitoring of encrypted video streaming. IEEE Access, 8, 74691–74706.

    Article  Google Scholar 

  25. Song, E., et al. (2020). Threshold-oblivious on-line web QoE assessment using neural network-based regression model. IET Communications, 14(12), 2018–2026.

    Article  Google Scholar 

  26. Seufert, M., Wassermann, S., & Casas, P. (2019). Considering user behavior in the quality of experience cycle: Towards proactive QoE-aware traffic management. IEEE Communications Letters, 23(7), 1145–1148.

    Article  Google Scholar 

  27. Lee, Y., Kim, Y., Park, S. (2019). A machine learning approach that meets axiomatic properties in probabilistic analysis of LTE spectral efficiency. In 2019 international conference on information and communication technology convergence (ICTC), Jeju Island, Korea (South) (pp. 1451–1453).

  28. Ji, H., Sun, C., & Shieh, W. (2020). Spectral efficiency comparison between analog and digital RoF for mobile Fronthaul transmission link. Journal of Lightwave Technology, 38(20), 5617-5623.

    Article  Google Scholar 

  29. Hayati, M., Kalbkhani, H., & Shayesteh, M. G. (2019). Relay selection for spectral-efficient network-coded multi-source D2D communications. In 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd Iran (pp. 1377–1381).

  30. You, L., Xiong, J., Zappone, A., Wang, W., & Gao, X. (2020). Spectral efficiency and energy efficiency tradeoff in massive MIMO downlink transmission with statistical CSIT. IEEE Transactions on Signal Processing, 68, 2645–2659.

    Article  MathSciNet  Google Scholar 

  31. Guo, C., Liang, L., & Li, G. Y. (2019). Resource allocation for low-latency vehicular communications: An effective capacity perspective. IEEE Journal on Selected Areas in Communications, 37(4), 905–917.

    Article  Google Scholar 

  32. Shehab, M., Alves, H., & Latva-aho, M. (2019). Effective capacity and power allocation for machine-type communication. IEEE Transactions on Vehicular Technology, 68(4), 4098–4102.

    Article  Google Scholar 

  33. Cui, Q., Gu, Y., Ni, W., & Liu, R. P. (2017). Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: From theory to application. IEEE Journal on Selected Areas in Communications, 35(8), 1754–1767.

    Article  Google Scholar 

  34. Xiao, C., Zeng, J., Ni, W., Liu, R. P., Su, X., & Wang, J. (2019). Delay guarantee and effective capacity of downlink NOMA fading channels. IEEE Journal of Selected Topics in Signal Processing, 13(3), 508–523.

    Article  Google Scholar 

  35. Björnson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Transactions on Wireless Communications, 15(2), 1293–1308.

    Article  Google Scholar 

  36. Stahlbuhk, T., Shrader, B., & Modiano, E. (2021). Learning algorithms for minimizing queue length regret. IEEE Transactions on Information Theory, 67(3), 1759-1781.

    Article  MathSciNet  MATH  Google Scholar 

  37. Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonsochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1), 1–122.

    Article  MATH  Google Scholar 

  38. Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2–3), 235–256.

    Article  MATH  Google Scholar 

  39. Krishnasamy, S., et al. (2016). Regret of queueing bandits. In 2016 Neural Information Processing Systems,  Barcelona SPAIN (pp. 1669–1677).

Download references

Acknowledgements

This work is partly supported by Jiangsu technology Project of Housing and Urban-Rural Development (No.2018ZD265) and Jiangsu major natural science research project of College and University (No. 19KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daihong Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Jiang, D., Zhang, K. et al. Channel selection observation period length analysis under different channel service rates. Wireless Netw 27, 4451–4459 (2021). https://doi.org/10.1007/s11276-021-02663-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02663-6

Keywords

Navigation