[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Routing constraints in the device-to-device communication for beyond IoT 5G networks: a review

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Routing is fundamental in any wireless network for path selection, which provides the most effective way that legitimizes the data to be transmitted from a source to a destination device. In gigantic network demand nowadays, routing is pertinent to ensure fast and reliable data transfer. Ineffective routing may cause route flapping and degrade the overall Quality of Service (QoS). Meanwhile, Device-to-Device communications (D2D) is a technology that allows the devices to be connected without or partial involvement of the conventional cellular network. With these natures of qualities, D2D communication provides a reliable propitious medium that caters for the needs of many different telecommunications scenarios. The interconnectivity of multiple devices creates the Internet of Things (IoT), which will be an essential insistent in future technologies. With the dynamic nature of D2D technology, the routing approach act as a principal architecture that essential to be implemented in every niche D2D aspect. If wrong routing decisions are made in D2D communication, the QoS performance would be worse than the conventional cellular network. This paper present the state of the art of fundamentals, recent progress, current challenges, future directions, and potential routing applications for D2D and Beyond IoT 5G Networks. This review will also act as a guide and reference for future researchers and scientists to explore and integrate the routing technique in D2D communication and Beyond IoT 5G Networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142. https://doi.org/10.1109/JIOT.2017.2683200

    Article  Google Scholar 

  2. Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2018). A survey on 5G networks for the internet of things: Communication technologies and challenges. IEEE Access, 6, 3619–3647. https://doi.org/10.1109/ACCESS.2017.2779844

    Article  Google Scholar 

  3. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2018). A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications Surveys & Tutorials, 20(1), 416–464. https://doi.org/10.1109/COMST.2017.2771153

    Article  Google Scholar 

  4. Metzger, F., Hoßfeld, T., Bauer, A., Kounev, S., & Heegaard, P. E. (2019). Modeling of aggregated IoT traffic and its application to an IoT cloud. Proceedings of the IEEE, 107(4), 679–694. https://doi.org/10.1109/JPROC.2019.2901578

    Article  Google Scholar 

  5. Novo, O. (2018). Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet of Things Journal, 5(2), 1184–1195. https://doi.org/10.1109/JIOT.2018.2812239

    Article  Google Scholar 

  6. Li, S., Da Xu, L., & Zhao, S. (2018). 5G internet of things: A survey. Journal of Industrial Information Integration, 10, 1–9

    Article  Google Scholar 

  7. Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). A survey on 5G networks for the Internet of Things: Communication technologies and challenges. IEEE Access, 6, 3619–3647

    Article  Google Scholar 

  8. Shafi, M., et al. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221. https://doi.org/10.1109/JSAC.2017.2692307

    Article  Google Scholar 

  9. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655

    Article  Google Scholar 

  10. Wang, Y., Li, J., Huang, L., Jing, Y., Georgakopoulos, A., & Demestichas, P. (2014). 5G mobile: Spectrum broadening to higher-frequency bands to support high data rates. IEEE Vehicular technology magazine, 9(3), 39–46

    Article  Google Scholar 

  11. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., & Dai, H. (2018). A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions. IEEE Communications Surveys & Tutorials, 20(4), 3098–3130. https://doi.org/10.1109/COMST.2018.2841349

    Article  Google Scholar 

  12. Olwal, T. O., Djouani, K., & Kurien, A. M. (2016). A survey of resource management toward 5G radio access networks. IEEE Communications Surveys & Tutorials, 18(3), 1656–1686

    Article  Google Scholar 

  13. Yu, R., Ding, J., Huang, X., Zhou, M.-T., Gjessing, S., & Zhang, Y. (2016). Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach. IEEE Transactions on Vehicular Technology, 65(10), 7844–7856

    Article  Google Scholar 

  14. Ferdouse, L., Ejaz, W., Raahemifar, K., Anpalagan, A., & Markandaier, M. (2017). Interference and throughput aware resource allocation for multi-class D2D in 5G networks. Iet Communications, 11(8), 1241–1250

    Article  Google Scholar 

  15. Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79

    Article  Google Scholar 

  16. Hindia, M. H. D. N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2020). On platform to enable the cognitive radio over 5G networks. Wireless Personal Communications, 113(2), 1241–1262

    Article  Google Scholar 

  17. Manap, S., Dimyati, K., Hindia, M. N., Talip, M. S. A., & Tafazolli, R. (2020). Survey of radio resource management in 5G heterogeneous networks. IEEE Access, 8, 131202–131223

    Article  Google Scholar 

  18. Qamar, F., Hindia, M. H. D. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems, 71(4), 627–643

    Article  Google Scholar 

  19. Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137

    Article  Google Scholar 

  20. Lee, J., et al. (2016). LTE-advanced in 3GPP Rel-13/14: An evolution toward 5G. IEEE Communications Magazine, 54(3), 36–42

    Article  Google Scholar 

  21. Tilwari, V., & Kushwah, A. S. (2013). Performance analysis of Wi-Max 802.16 e physical layer using digital modulation techniques and code rates. International Journal of Engineering Research and Applications (IJERA), Volume, 3, 1449–1454

    Google Scholar 

  22. Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49

    Article  Google Scholar 

  23. Ge, X., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless backhaul networks: challenges and research advance. arXiv preprint http://arxiv.org/abs/1412.7232.

  24. Xiao, M., et al. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935. https://doi.org/10.1109/JSAC.2017.2719924

    Article  Google Scholar 

  25. Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230. https://doi.org/10.1109/TAP.2017.2734243

    Article  Google Scholar 

  26. Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75

    Article  Google Scholar 

  27. Bani-Bakr, A., et al. (2020). Optimizing the number of fog nodes for finite fog radio access networks under multi-slope path loss model. Electronics, 9(12), 2175

    Article  Google Scholar 

  28. Andrews, J. G., Bai, T., Kulkarni, M. N., Alkhateeb, A., Gupta, A. K., & Heath, R. W. (2017). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications, 65(1), 403–430. https://doi.org/10.1109/TCOMM.2016.2618794

    Article  Google Scholar 

  29. Hong, W., Baek, K., & Ko, S. (2017). Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration. IEEE Transactions on Antennas and Propagation, 65(12), 6250–6261. https://doi.org/10.1109/TAP.2017.2740963

    Article  Google Scholar 

  30. Moltchanov, D., Kovalchukov, R., Gerasimenko, M., Andreev, S., Koucheryavy, Y., & Gerla, M. (2019). Socially inspired relaying and proactive mode selection in mmwave vehicular communications. IEEE Internet of Things Journal, 6(3), 5172–5183. https://doi.org/10.1109/JIOT.2019.2898420

    Article  Google Scholar 

  31. Liu, P., Renzo, M. D., & Springer, A. (2016). Line-of-sight spatial modulation for indoor mmwave communication at 60 GHz. IEEE Transactions on Wireless Communications, 15(11), 7373–7389. https://doi.org/10.1109/TWC.2016.2601616

    Article  Google Scholar 

  32. Kumbhar, F. H., Saxena, N., & Roy, A. (2017). Reliable relay: Autonomous social D2D paradigm for 5G LoS communications. IEEE Communications Letters, 21(7), 1593–1596. https://doi.org/10.1109/LCOMM.2017.2682091

    Article  Google Scholar 

  33. Ai, B., et al. (2017). On indoor millimeter wave massive MIMO channels: measurement and simulation. IEEE Journal on Selected Areas in Communications, 35(7), 1678–1690. https://doi.org/10.1109/JSAC.2017.2698780

    Article  Google Scholar 

  34. Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT express, 4(4), 203–208

    Article  Google Scholar 

  35. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49

    Article  Google Scholar 

  36. Liang, L., Li, G. Y., & Xu, W. (2017). Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications, 65(7), 3186–3197. https://doi.org/10.1109/TCOMM.2017.2699194

    Article  Google Scholar 

  37. Wu, Y., Chen, J., Qian, L. P., Huang, J., & Shen, X. S. (2017). Energy-aware cooperative traffic offloading via device-to-device cooperations: An analytical approach. IEEE Transactions on Mobile Computing, 16(1), 97–114. https://doi.org/10.1109/TMC.2016.2539950

    Article  Google Scholar 

  38. Wang, L., Tang, H., Wu, H., & Stüber, G. L. (2017). Resource allocation for D2D communications underlay in Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1159–1170. https://doi.org/10.1109/TVT.2016.2553124

    Article  Google Scholar 

  39. Jameel, F., Hamid, Z., Jabeen, F., Zeadally, S., & Javed, M. A. (2018). A survey of device-to-device communications: Research issues and challenges. IEEE Communications Surveys & Tutorials, 20(3), 2133–2168. https://doi.org/10.1109/COMST.2018.2828120

    Article  Google Scholar 

  40. Zhang, H., Liao, Y., & Song, L. (2017). D2D-U: device-to-device communications in unlicensed bands for 5G system. IEEE Transactions on Wireless Communications, 16(6), 3507–3519. https://doi.org/10.1109/TWC.2017.2683479

    Article  Google Scholar 

  41. Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29

    Article  Google Scholar 

  42. Ahmad, M., Azam, M., Naeem, M., Iqbal, M., Anpalagan, A., & Haneef, M. (2017). Resource management in D2D communication: An optimization perspective. Journal of Network and Computer Applications, 93, 51–75

    Article  Google Scholar 

  43. Gandotra, P., & Jha, R. K. (2017). A survey on green communication and security challenges in 5G wireless communication networks. Journal of Network and Computer Applications, 96, 39–61

    Article  Google Scholar 

  44. Ali, A., Shah, G. A., Farooq, M. O., & Ghani, U. (2017). Technologies and challenges in developing Machine-to-Machine applications: A survey. Journal of Network and Computer Applications, 83, 124–139

    Article  Google Scholar 

  45. Pescosolido, L., Conti, M. & Passarella, A. (2019). D2D Data Offloading in Vehicular Environments with Optimal Delivery Time Selection. arXiv preprint http://arxiv.org/abs/1901.01744.

  46. Cheon, H.-R., & Kim, J.-H. (2019). Social-aware mobile data offloading algorithm through small cell backhaul network: Direct and indirect user influence perspectives. Computer Networks, 165, 106951

    Article  Google Scholar 

  47. Sharafeddine, S., & Farhat, O. (2018). A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading. Ad Hoc Networks, 77, 42–53

    Article  Google Scholar 

  48. Cheng, R.-S., Huang, C.-M., & Pan, S.-Y. (2018). WiFi offloading using the device-to-device (D2D) communication paradigm based on the Software Defined Network (SDN) architecture. Journal of Network and Computer Applications, 112, 18–28

    Article  Google Scholar 

  49. Moghaddam, J. Z., Usman, M., & Granelli, F. (2018). A device-to-device communication-based disaster response network. IEEE Transactions on Cognitive Communications and Networking, 4(2), 288–298. https://doi.org/10.1109/TCCN.2018.2801339

    Article  Google Scholar 

  50. Masaracchia, A., Nguyen, L. D., Duong, T. Q., & Nguyen, M. (2019). An energy-efficient clustering and routing framework for disaster relief network. IEEE Access, 7, 56520–56532. https://doi.org/10.1109/ACCESS.2019.2913909

    Article  Google Scholar 

  51. Rong, H., Wang, Z., Jiang, H., Xiao, Z., & Zeng, F. (2019). Energy-aware clustering and routing in infrastructure failure areas with D2D communication. IEEE Internet of Things Journal, 6(5), 8645–8657. https://doi.org/10.1109/JIOT.2019.2922202

    Article  Google Scholar 

  52. Wang, X., Wu, X., & Zhang, X. (2017). Optimizing opportunistic routing in asynchronous wireless sensor networks. IEEE Communications Letters, 21(10), 2302–2305. https://doi.org/10.1109/LCOMM.2017.2729557

    Article  Google Scholar 

  53. Liu, H., Su, J., & Chou, C. (2017). On energy-efficient straight-line routing protocol for wireless sensor networks. IEEE Systems Journal, 11(4), 2374–2382. https://doi.org/10.1109/JSYST.2015.2448714

    Article  Google Scholar 

  54. Wang, J., Yue, H., Hai, L., & Fang, Y. (2017). Spectrum-aware anypath routing in multi-hop cognitive radio networks. IEEE Transactions on Mobile Computing, 16(4), 1176–1187. https://doi.org/10.1109/TMC.2016.2582173

    Article  Google Scholar 

  55. Sharma, D., & Bhondekar, A. P. (2018). Traffic and energy aware routing for heterogeneous wireless sensor networks. IEEE Communications Letters, 22(8), 1608–1611. https://doi.org/10.1109/LCOMM.2018.2841911

    Article  Google Scholar 

  56. Pradittasnee, L., Camtepe, S., & Tian, Y. (2017). Efficient route update and maintenance for reliable routing in large-scale sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 144–156. https://doi.org/10.1109/TII.2016.2569523

    Article  Google Scholar 

  57. Huang, H., Yin, H., Min, G., Zhang, J., Wu, Y., & Zhang, X. (2018). Energy-aware dual-path geographic routing to bypass routing holes in wireless sensor networks. IEEE Transactions on Mobile Computing, 17(6), 1339–1352. https://doi.org/10.1109/TMC.2017.2771424

    Article  Google Scholar 

  58. Chen, G., Tang, J., & Coon, J. P. (2018). Optimal routing for multihop social-based D2D communications in the internet of things. IEEE Internet of Things Journal, 5(3), 1880–1889. https://doi.org/10.1109/JIOT.2018.2817024

    Article  Google Scholar 

  59. Shaikh, F. S., & Wismüller, R. (2018). Routing in multi-hop cellular device-to-device (D2D) networks: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2622–2657. https://doi.org/10.1109/COMST.2018.2848108

    Article  Google Scholar 

  60. Al-Turjman, F., Deebak, B. D., & Mostarda, L. (2019). Energy aware resource allocation in multi-hop multimedia routing via the smart edge device. IEEE Access, 7, 151203–151214. https://doi.org/10.1109/ACCESS.2019.2945797

    Article  Google Scholar 

  61. Liu, X., Li, Z., Yang, P., & Dong, Y. (2017). Information-centric mobile ad hoc networks and content routing: a survey. Ad Hoc Networks, 58, 255–268

    Article  Google Scholar 

  62. Bello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52–62

    Article  Google Scholar 

  63. Wenbin, Y., Yin, C., Ming, Z., & Dongbin, W. (2017). QoS-oriented packet scheduling scheme for opportunistic networks. The Journal of China Universities of Posts and Telecommunications, 24(3), 51–57

    Article  Google Scholar 

  64. Xu, Y., Liu, J., Shen, Y., Jiang, X., & Shiratori, N. (2017). Physical layer security-aware routing and performance tradeoffs in ad hoc networks. Computer Networks, 123, 77–87

    Article  Google Scholar 

  65. Kazeminia, M., Mehrjoo, M., & Tomasin, S. (2019). Delay-aware spectrum sharing solutions for mixed cellular and D2D links. Computer Communications, 139, 58–66

    Article  Google Scholar 

  66. Kolios, P., Papadaki, K., & Friderikos, V. (2016). Efficient cellular load balancing through mobility-enriched vehicular communications. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2971–2983. https://doi.org/10.1109/TITS.2015.2505304

    Article  Google Scholar 

  67. Zhang, X., Huang, P., Guo, L., & Fang, Y. (2019). Social-aware energy-efficient data offloading with strong stability. IEEE/ACM Transactions on Networking, 27(4), 1515–1528. https://doi.org/10.1109/TNET.2019.2924875

    Article  Google Scholar 

  68. Singh, D., & Ghosh, S. C. (2019). Mobility-aware relay selection in 5G D2D communication using stochastic model. IEEE Transactions on Vehicular Technology, 68(3), 2837–2849. https://doi.org/10.1109/TVT.2019.2893995

    Article  Google Scholar 

  69. de Mello, M. O. M. C., Borges, V. C. M., Pinto, L. L., & Cardoso, K. V. (2016). Improving load balancing, path length, and stability in low-cost wireless backhauls. Ad Hoc Networks, 48, 16–28

    Article  Google Scholar 

  70. Zhang, H., Song, L., & Zhang, Y. J. (2018). Load balancing for 5G ultra-dense networks using device-to-device communications. IEEE Transactions on Wireless Communications, 17(6), 4039–4050. https://doi.org/10.1109/TWC.2018.2819648

    Article  Google Scholar 

  71. Sanyal, S., & Zhang, P. (2018). Improving quality of data: IoT data aggregation using device to device communications. IEEE Access, 6, 67830–67840. https://doi.org/10.1109/ACCESS.2018.2878640

    Article  Google Scholar 

  72. Xu, C., Feng, J., Zhou, Z., Wu, J., & Perera, C. (2019). Cross-layer optimization for cooperative content distribution in multihop device-to-device networks. IEEE Internet of Things Journal, 6(1), 278–287. https://doi.org/10.1109/JIOT.2017.2741718

    Article  Google Scholar 

  73. Lei, L., Shen, X., Dohler, M., Lin, C., & Zhong, Z. (2014). Queuing models with applications to mode selection in device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 13(12), 6697–6715. https://doi.org/10.1109/TWC.2014.2335734

    Article  Google Scholar 

  74. AlQahtani, S., & Alotaibi, A. (2019). A route stability-based multipath QoS routing protocol in cognitive radio ad hoc networks. Wireless Networks, 25(5), 2931–2951

    Article  Google Scholar 

  75. Al-Kharasani, N. M., Zukarnain, Z. A., Subramaniam, S. K., & Hanapi, Z. M. (2020). An adaptive relay selection scheme for enhancing network stability in VANETs. IEEE Access, 8, 128757–128765

    Article  Google Scholar 

  76. Mohamed, E. M., Elhalawany, B. M., Khallaf, H. S., Zareei, M., Zeb, A., & Abdelghany, M. A. (2020). Relay probing for millimeter wave multi-hop D2D networks. IEEE Access, 8, 30560–30574

    Article  Google Scholar 

  77. Basak, S., & Acharya, T. (2020). On energy efficient secure routing in multi-hop underlay D2D communications for IoT applications. Ad Hoc Networks, 108, 102275

    Article  Google Scholar 

  78. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198

    Article  Google Scholar 

  79. Lin, C.-S., & Sou, S.-I. (2019). QoS-aware dynamic bandwidth reallocation with deadline assurance for multipath data offloading. Computer Networks, 153, 103–112

    Article  Google Scholar 

  80. Kılıç, G., & Girici, T. (2019). Joint channel and power allocation for device-to-device underlay. Ad Hoc Networks, 83, 158–167

    Article  Google Scholar 

  81. Li, Y., Liang, Y., Liu, Q., & Wang, H. (2018). Resources allocation in multicell D2D communications for internet of things. IEEE Internet of Things Journal, 5(5), 4100–4108. https://doi.org/10.1109/JIOT.2018.2870614

    Article  Google Scholar 

  82. Yang, Z.-Y., & Kuo, Y.-W. (2017). Efficient resource allocation algorithm for overlay D2D communication. Computer Networks, 124, 61–71

    Article  Google Scholar 

  83. Esmat, H. H., Elmesalawy, M. M., & Ibrahim, I. I. (2018). Uplink resource allocation and power control for D2D communications underlaying multi-cell mobile networks. AEU-International Journal of Electronics and Communications, 93, 163–171

    Google Scholar 

  84. Lin, Z., Huang, L., Zhao, Y., Du, X., & Guizani, M. (2017). P2P-based resource allocation with coalitional game for D2D networks. Pervasive and Mobile Computing, 42, 487–497

    Article  Google Scholar 

  85. Gong, W., Li, G., & Li, B. (2018). System utility based resource allocation for D2D multicast communication in software-defined cellular networks. AEU-International Journal of Electronics and Communications, 96, 138–143

    Google Scholar 

  86. Ali, M., Qaisar, S., Naeem, M., Mumtaz, S., & Rodrigues, J. J. P. C. (2017). Combinatorial resource allocation in D2D assisted heterogeneous relay networks. Future Generation Computer Systems, 107(2020), 956–964

    Google Scholar 

  87. Bakhsh, Z. M., Moghaddam, J. Z., & Ardebilipour, M. (2019). An interference management approach for CR-assisted cooperative D2D communication. AEU-International Journal of Electronics and Communications, 115, 153026

    Google Scholar 

  88. Najeh, S. (2020). Joint mode selection and power control for D2D underlaid cellular networks. Physical Communication, 38, 100917

    Article  Google Scholar 

  89. Amodu, O. A., Othman, M., Noordin, N. K., & Ahmad, I. (2019). Transmission capacity analysis of relay-assisted D2D cellular networks with M2M coexistence. Computer Networks, 164, 106887

    Article  Google Scholar 

  90. Wang, D.-L., Sun, Q.-Y., Li, Y.-Y., & Liu, X.-R. (2019). Optimal energy routing design in energy internet with multiple energy routing centers using artificial neural network-based reinforcement learning method. Applied Sciences, 9(3), 520

    Article  Google Scholar 

  91. Liu, T., Lui, J. C. S., Ma, X., & Jiang, H. (2018). Enabling relay-assisted D2D communication for cellular networks: Algorithm and protocols. IEEE Internet of Things Journal, 5(4), 3136–3150. https://doi.org/10.1109/JIOT.2018.2834517

    Article  Google Scholar 

  92. Cao, Y., & Sun, Z. (2013). Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges. IEEE Communications Surveys & Tutorials, 15(2), 654–677. https://doi.org/10.1109/SURV.2012.042512.00053

    Article  Google Scholar 

  93. Abolhasan, M., Abdollahi, M., Ni, W., Jamalipour, A., Shariati, N., & Lipman, J. (2018). A routing framework for offloading traffic from cellular networks to SDN-based multi-hop device-to-device networks. IEEE Transactions on Network and Service Management, 15(4), 1516–1531. https://doi.org/10.1109/TNSM.2018.2875696

    Article  Google Scholar 

  94. Tilwari, V., et al. (2020). MCLMR: A multicriteria based multipath routing in the mobile ad hoc networks. Wireless Personal Communications, 112, 1–23

    Article  Google Scholar 

  95. Tilwari, V., Dimyati, K., Hindia, M. H. D., Mohmed Noor Izam, T. F. B. T., & Amiri, I. S. (2020). EMBLR: A high-performance optimal routing approach for D2D communications in large-scale IoT 5G network. Symmetry, 12(3), 438

    Article  Google Scholar 

  96. Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences, 9(8), 1582

    Article  Google Scholar 

  97. Malathy, S., et al. (2020). An optimal network coding based backpressure routing approach for massive IoT network. Wireless Networks, 26, 1–18

    Article  Google Scholar 

  98. Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad-hoc networks. International Journal of Technology, 10(7), 1376–1384

    Article  Google Scholar 

  99. Amiri, I. S. et al. (2019). DABPR: a large-scale internet of things-based data aggregation back pressure routing for disaster management. Wireless Networks, pp. 1–22.

  100. Razzaq, M., & Shin, S. (2019). Fuzzy-logic dijkstra-based energy-efficient algorithm for data transmission in WSNs. Sensors, 19(5), 1040

    Article  Google Scholar 

  101. Huang, C., Zhai, B., Tang, A., & Wang, X. (2019). Virtual mesh networking for achieving multi-hop D2D communications in 5G networks. Ad Hoc Networks, 94, 101936

    Article  Google Scholar 

  102. Hamdi, M., & Zaied, M. (2019). Resource allocation based on hybrid genetic algorithm and particle swarm optimization for D2D multicast communications. Applied Soft Computing, 83, 105605

    Article  Google Scholar 

  103. Pawar, P., & Trivedi, A. (2019). Interference-aware channel assignment and power allocation for device-to-device communication underlaying cellular network. AEU-International Journal of Electronics and Communications, 112, 152928

    Google Scholar 

  104. Vallet, J., Brun, O., & Prabhu, B. (2016). A game-theoretic algorithm for non-linear single-path routing problems. Electronic Notes in Discrete Mathematics, 52, 77–84

    Article  MathSciNet  MATH  Google Scholar 

  105. Simha, R., & Narahari, B. (1992). Single path routing with delay considerations. Computer Networks and ISDN Systems, 24(5), 405–419

    Article  MATH  Google Scholar 

  106. Sahin, D., Gungor, V. C., Kocak, T., & Tuna, G. (2014). Quality-of-service differentiation in single-path and multi-path routing for wireless sensor network-based smart grid applications. Ad Hoc Networks, 22, 43–60

    Article  Google Scholar 

  107. Macit, M., Gungor, V. C., & Tuna, G. (2014). Comparison of QoS-aware single-path vs. multi-path routing protocols for image transmission in wireless multimedia sensor networks. Ad hoc networks, 19, 132–141

    Article  Google Scholar 

  108. Al-Baghdadi, A., Lian, X., & Cheng, E. (2020). Efficient path routing over road networks in the presence of ad-hoc obstacles. Information Systems, 88, 101453

    Article  Google Scholar 

  109. Kim, H., Kim, H., Paek, J., & Bahk, S. (2017). Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks. IEEE Transactions on Mobile Computing, 16(4), 964–979. https://doi.org/10.1109/TMC.2016.2585107

    Article  Google Scholar 

  110. Selvi, P. F. A., & Manikandan, M. S. K. (2017). Ant based multipath backbone routing for load balancing in MANET. IET Communications, 11(1), 136–141. https://doi.org/10.1049/iet-com.2016.0574

    Article  Google Scholar 

  111. Shukla, S., Bhardwaj, O., Abouzeid, A. A., Salonidis, T., & He, T. (2018). Proactive retention-aware caching with multi-path routing for wireless edge networks. IEEE Journal on Selected Areas in Communications, 36(6), 1286–1299. https://doi.org/10.1109/JSAC.2018.2844999

    Article  Google Scholar 

  112. Pan, J., Popa, I. S., & Borcea, C. (2017). DIVERT: a distributed vehicular traffic re-routing system for congestion avoidance. IEEE Transactions on Mobile Computing, 16(1), 58–72. https://doi.org/10.1109/TMC.2016.2538226

    Article  Google Scholar 

  113. Cao, Z., Jiang, S., Zhang, J., & Guo, H. (2017). A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion. IEEE Transactions on Intelligent Transportation Systems, 18(7), 1958–1973. https://doi.org/10.1109/TITS.2016.2613997

    Article  Google Scholar 

  114. Ferronato, J. J., & Trentin, M. A. S. (2017). Analysis of routing protocols OLSR, AODV and ZRP in real urban vehicular scenario with density variation. IEEE Latin America Transactions, 15(9), 1727–1734. https://doi.org/10.1109/TLA.2017.8015079

    Article  Google Scholar 

  115. Siraj, M. N., Ahmed, Z., Hanif, M. K., Chaudary, M. H., Khan, S. A., & Javaid, N. (2018). A hybrid routing protocol for wireless distributed networks. IEEE Access, 6, 67244–67260. https://doi.org/10.1109/ACCESS.2018.2875952

    Article  Google Scholar 

  116. Zhang, H., Wang, X., Memarmoshrefi, P., & Hogrefe, D. (2017). A survey of ant colony optimization based routing protocols for mobile ad hoc networks. IEEE Access, 5, 24139–24161. https://doi.org/10.1109/ACCESS.2017.2762472

    Article  Google Scholar 

  117. Haque, I. T. (2015). On the overheads of ad hoc routing schemes. IEEE Systems Journal, 9(2), 605–614. https://doi.org/10.1109/JSYST.2013.2294881

    Article  Google Scholar 

  118. Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in Wireless Sensor Networks. Computers & Electrical Engineering, 70, 21–36

    Article  Google Scholar 

  119. Mohamed, R. E., Ghanem, W. R., Khalil, A. T., Elhoseny, M., Sajjad, M., & Mohamed, M. A. (2018). Energy efficient collaborative proactive routing protocol for wireless sensor network. Computer Networks, 142, 154–167

    Article  Google Scholar 

  120. Angelelli, E., Morandi, V., & Speranza, M. G. (2018). Congestion avoiding heuristic path generation for the proactive route guidance. Computers & Operations Research, 99, 234–248

    Article  MathSciNet  MATH  Google Scholar 

  121. Taha, A., Alsaqour, R., Uddin, M., Abdelhaq, M., & Saba, T. (2017). Energy efficient multipath routing protocol for mobile ad-hoc network using the fitness function. IEEE Access, 5, 10369–10381. https://doi.org/10.1109/ACCESS.2017.2707537

    Article  Google Scholar 

  122. Kuo, W., & Chu, S. (2016). Energy efficiency optimization for mobile Ad hoc networks. IEEE Access, 4, 928–940. https://doi.org/10.1109/ACCESS.2016.2538269

    Article  Google Scholar 

  123. Bai, F., Sadagopan, N., Krishnamachari, B., & Helmy, A. (2004). Modeling path duration distributions in MANETs and their impact on reactive routing protocols. IEEE Journal on Selected Areas in Communications, 22(7), 1357–1373. https://doi.org/10.1109/JSAC.2004.829353

    Article  Google Scholar 

  124. Muchtar, F., Abdullah, A. H., Hassan, S., Khader, A. T., & Zamli, K. Z. (2019). Energy conservation of content routing through wireless broadcast control in NDN based MANET: A review. Journal of Network and Computer Applications, 131, 109–132

    Article  Google Scholar 

  125. Chithaluru, P., Tiwari, R., & Kumar, K. (2019). AREOR–Adaptive ranking based energy efficient opportunistic routing scheme in Wireless Sensor Network. Computer Networks, 162, 106863

    Article  Google Scholar 

  126. Bello-Salau, H., Aibinu, A. M., Wang, Z., Onumanyi, A. J., Onwuka, E. N., & Dukiya, J. J. (2019). An optimized routing algorithm for vehicle ad-hoc networks. Engineering Science and Technology, an International Journal, 22(3), 754–766

    Article  Google Scholar 

  127. Al-Dhief, F. T., Sabri, N., Fouad, S., Latiff, N. M. A., & Albader, M. A. A. (2017). A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective. Journal of King Saud University-Computer and Information Sciences, 31(2019), 135–146

    Google Scholar 

  128. Hurley-Smith, D., Wetherall, J., & Adekunle, A. (2017). SUPERMAN: Security using pre-existing routing for mobile ad hoc networks. IEEE Transactions on Mobile Computing, 16(10), 2927–2940. https://doi.org/10.1109/TMC.2017.2649527

    Article  Google Scholar 

  129. Rosati, S., Krużelecki, K., Heitz, G., Floreano, D., & Rimoldi, B. (2016). Dynamic routing for flying ad hoc networks. IEEE Transactions on Vehicular Technology, 65(3), 1690–1700. https://doi.org/10.1109/TVT.2015.2414819

    Article  Google Scholar 

  130. Torrieri, D., Talarico, S., & Valenti, M. C. (2015). Performance comparisons of geographic routing protocols in mobile ad hoc networks. IEEE Transactions on Communications, 63(11), 4276–4286. https://doi.org/10.1109/TCOMM.2015.2477337

    Article  Google Scholar 

  131. Govindasamy, J., & Punniakody, S. (2018). A comparative study of reactive, proactive and hybrid routing protocol in wireless sensor network under wormhole attack. Journal of Electrical Systems and Information Technology, 5(3), 735–744

    Article  Google Scholar 

  132. Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31

    Article  Google Scholar 

  133. Muchtar, F., Abdullah, A. H., Hassan, S., & Masud, F. (2018). Energy conservation strategies in Host Centric Networking based MANET: A review. Journal of Network and Computer Applications, 111, 77–98

    Article  Google Scholar 

  134. Al Mojamed, M., & Kolberg, M. (2016). Structured Peer-to-Peer overlay deployment on MANET: A survey. Computer Networks, 96, 29–47

    Article  Google Scholar 

  135. Ramanathan, R., & Redi, J. (2002). A brief overview of ad hoc networks: challenges and directions. IEEE communications Magazine, 40(5), 20–22

    Article  Google Scholar 

  136. Malik, S., & Sahu, P. K. (2019). A comparative study on routing protocols for VANETs. Heliyon, 5(8), e02340

    Article  Google Scholar 

  137. Ma, Z., Li, B., Yan, Z., & Yang, M. (2020). QoS-Oriented joint optimization of resource allocation and concurrent scheduling in 5G millimeter-wave network. Computer Networks, 166, 106979

    Article  Google Scholar 

  138. Liu, X., Yang, B., Jiang, X., Ma, L., & Shen, S. (2020). On social-aware data uploading study of D2D-enabled cellular networks. Computer Networks, 166, 106955

    Article  Google Scholar 

  139. Yang, B., Wu, Z., Shen, Y., & Jiang, X. (2019). packet delivery ratio and energy consumption in multicast delay tolerant MANETs with power control. Computer Networks, 161, 150–161

    Article  Google Scholar 

  140. Lin, Z., & Wang, P. (2019). A review of data sets of short-range wireless networks. Computer Communications, 147, 138–158

    Article  Google Scholar 

  141. Mei, H., Lu, H., & Peng, L. (2019). Data offloading in cache-enabled cross-haul networks. Computer Communications, 142, 1–8

    Article  Google Scholar 

  142. Wang, Y., Yu, Z., Huang, J., & Choi, C. (2019). A novel energy-efficient neighbor discovery procedure in a wireless self-organization network. Information Sciences, 476, 429–438

    Article  Google Scholar 

  143. Zhao, Z., Xu, K., Hui, G., & Hu, L. (2018). An energy-efficient clustering routing protocol for wireless sensor networks based on AGNES with balanced energy consumption optimization. Sensors, 18(11), 3938

    Article  Google Scholar 

  144. Hasan, M. Z., Al-Rizzo, H., & Al-Turjman, F. (2017). A survey on multipath routing protocols for qos assurances in real-time wireless multimedia sensor networks. IEEE Communications Surveys & Tutorials, 19(3), 1424–1456. https://doi.org/10.1109/COMST.2017.2661201

    Article  Google Scholar 

  145. Maheswar, R., et al. (2021). CBPR: A cluster-based backpressure routing for the internet of things. Wireless Personal Communications, 116, 1–19.

    Google Scholar 

  146. Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile Ad Hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78–93. https://doi.org/10.1109/SURV.2008.080407

    Article  Google Scholar 

  147. Boushaba, A., Benabbou, A., Benabbou, R., Zahi, A., & Oumsis, M. (2014). An enhanced MP-OLSR protocol for MANETs. In 2014 International Conference on Next Generation Networks and Services (NGNS), (pp. 73–79) 28–30 May 2014 2014, https://doi.org/10.1109/NGNS.2014.6990231.

  148. Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials, 18(2), 1123–1152. https://doi.org/10.1109/COMST.2015.2495297

    Article  Google Scholar 

  149. Pu, C. (2018). Jamming-resilient multipath routing protocol for flying Ad Hoc networks. IEEE Access, 6, 68472–68486. https://doi.org/10.1109/ACCESS.2018.2879758

    Article  Google Scholar 

  150. Khalid, M., Ahmad, F., Arshad, M., Khalid, W., Ahmad, N., & Cao, Y. (2019). E2MR: energy-efficient multipath routing protocol for underwater wireless sensor networks. IET Networks, 8(5), 321–328. https://doi.org/10.1049/iet-net.2018.5203

    Article  Google Scholar 

  151. Valerio, V. D., Presti, F. L., Petrioli, C., Picari, L., Spaccini, D., & Basagni, S. (2019). CARMA: Channel-aware reinforcement learning-based multi-path adaptive routing for underwater wireless sensor networks. IEEE Journal on Selected Areas in Communications, 37(11), 2634–2647. https://doi.org/10.1109/JSAC.2019.2933968

    Article  Google Scholar 

  152. Khalid, M., Cao, Y., Ahmad, N., Khalid, W., & Dhawankar, P. (2018). Radius-based multipath courier node routing protocol for acoustic communications. IET Wireless Sensor Systems, 8(4), 183–189. https://doi.org/10.1049/iet-wss.2017.0165

    Article  Google Scholar 

  153. Vinitha, A., & Rukmini, M. S. S. (2019). Secure and energy aware multi-hop routing protocol in WSN using Taylor-based hybrid optimization algorithm. Journal of King Saud University-Computer and Information Sciences, 33(2021), 1–12

    Google Scholar 

  154. Guirguis, A., Karmoose, M., Habak, K., El-Nainay, M., & Youssef, M. (2018). Cooperation-based multi-hop routing protocol for cognitive radio networks. Journal of Network and Computer Applications, 110, 27–42

    Article  Google Scholar 

  155. Geng, H., Shi, X., Wang, Z., & Yin, X. (2018). A hop-by-hop dynamic distributed multipath routing mechanism for link state network. Computer Communications, 116, 225–239

    Article  Google Scholar 

  156. Lim, C. L., Goh, C., & Li, Y. (2019). Long-term routing stability of wireless sensor networks in a real-world environment. IEEE Access, 7, 74351–74360

    Article  Google Scholar 

  157. Fu, X., Yao, H., & Yang, Y. (2019). Cascading Failures in Wireless Sensor Networks with load Redistribution of Links and Nodes. Ad Hoc Networks, 93, 101900

    Article  Google Scholar 

  158. Abd-Elmagid, M. A., ElBatt, T., & Seddik, K. G. (2019). Optimization of energy-constrained wireless powered communication networks with heterogeneous nodes. Wireless Networks, 25(2), 713–730

    Article  Google Scholar 

  159. Liu, X., Wen, Z., Liu, D., Zou, J., & Li, S. (2019). Joint source and relay beamforming design in wireless multi-hop sensor networks with SWIPT. Sensors, 19(1), 182

    Article  Google Scholar 

  160. Song, M., & Zheng, M. (2018). Energy efficiency optimization for wireless powered sensor networks with nonorthogonal multiple access. IEEE Sensors Letters, 2(1), 1–4. https://doi.org/10.1109/LSENS.2018.2792454

    Article  Google Scholar 

  161. Tang, L., Yang, X., Wu, X., Cui, T., & Chen, Q. (2018). Queue stability-based virtual resource allocation for virtualized wireless networks with self-backhauls. IEEE Access, 6, 13604–13616. https://doi.org/10.1109/ACCESS.2018.2797088

    Article  Google Scholar 

  162. Vu, T. K., Bennis, M., Debbah, M., & Latva-Aho, M. (2019). Joint path selection and rate allocation framework for 5G self-backhauled mm-wave networks. IEEE Transactions on Wireless Communications, 18(4), 2431–2445. https://doi.org/10.1109/TWC.2019.2904275

    Article  Google Scholar 

  163. Li, M., Zhang, L., Li, V. O., Shan, X., & Ren, Y. (2005). An energy-aware multipath routing protocol for mobile ad hoc networks. ACM Sigcomm Asia, 5, 10–12

    Google Scholar 

  164. Villasenor-Gonzalez, L., Ge, Y., & Lament, L. (2005). HOLSR: a hierarchical proactive routing mechanism for mobile ad hoc networks. IEEE Communications Magazine, 43(7), 118–125

    Article  Google Scholar 

  165. Mnaouer, A. B., Chen, L., Foh, C. H., & Tantra, J. W. (2007). OPHMR: an optimized polymorphic hybrid multicast routing protocol for MANET. IEEE Transactions on Mobile Computing, 6(5), 551–562

    Article  Google Scholar 

  166. Wu, Z.-Y., & Song, H.-T. (2008). Ant-based energy-aware disjoint multipath routing algorithm for MANETs. The Computer Journal, 53(2), 166–176

    Article  Google Scholar 

  167. Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad hoc networks, 9(1), 28–47

    Article  Google Scholar 

  168. Huang, M., Liang, Q., & Xi, J. (2012). A parallel disjointed multi-path routing algorithm based on OLSR and energy in ad hoc networks. Journal of Networks, 7(4), 613

    Article  Google Scholar 

  169. Sarkar, S., & Datta, R. (2017). Mobility-aware route selection technique for mobile ad hoc networks. IET Wireless Sensor Systems, 7(3), 55–64

    Article  Google Scholar 

  170. Sobral, J. V. V., Rodrigues, J. J. P. C., Rabêlo, R. A. L., Saleem, K., & Kozlov, S. A. (2019). Improving the performance of LOADng routing protocol in mobile IoT scenarios. IEEE Access, 7, 107032–107046

    Article  Google Scholar 

  171. Wang, Z., Bulut, E. & Szymanski, B. K. (2009). Energy efficient collision aware multipath routing for wireless sensor networks. In Communications, 2009. ICC'09. IEEE International Conference on, pp. 1–5, IEEE.

  172. Badis, H. & Al Agha, K. (2004). QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay. vol. 4, pp. 2181–2184, IEEE.

  173. Villasenor-Gonzalez, L., Ying, G., & Lament, L. (2005). HOLSR: a hierarchical proactive routing mechanism for mobile ad hoc networks. IEEE Communications Magazine, 43(7), 118–125. https://doi.org/10.1109/MCOM.2005.1470838

    Article  Google Scholar 

  174. Wang, Z., Chen, Y., & Li, C. (2014). PSR: A lightweight proactive source routing protocol for mobile ad hoc networks. IEEE transactions on Vehicular Technology, 63(2), 859–868

    Article  Google Scholar 

  175. Pham, Q., & Hwang, W. (2017). Network utility maximization-based congestion control over wireless networks: A survey and potential directives. IEEE Communications Surveys & Tutorials, 19(2), 1173–1200. https://doi.org/10.1109/COMST.2016.2619485

    Article  Google Scholar 

  176. Yi, J. & Parrein, B. (2017). Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2).

  177. Bhattacharya, A., & Sinha, K. (2017). An efficient protocol for load-balanced multipath routing in mobile ad hoc networks. Ad Hoc Networks, 63, 104–114

    Article  Google Scholar 

  178. Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2018). A distributed energy-harvesting-aware routing algorithm for heterogeneous IoT networks. IEEE Transactions on Green Communications and Networking, 2(4), 1115–1127

    Article  Google Scholar 

  179. Debroy, S., Samanta, P., Bashir, A., & Chatterjee, M. (2019). SpEED-IoT: Spectrum aware energy efficient routing for device-to-device IoT communication. Future Generation Computer Systems, 93, 833–848

    Article  Google Scholar 

  180. Mukherjee, T., Gupta, S. K., & Varsamopoulos, G. J. P. E. (2009). Energy optimization for proactive unicast route maintenance in MANETs under end-to-end reliability requirements. Performance Evaluation, 66(3–5), 141–157

    Article  Google Scholar 

  181. Huynh, D.-T., Chen, M., Huynh, T.-T., & Hai, C. H. (2019). Energy consumption optimization for green Device-to-Device multimedia communications. Future Generation Computer Systems, 92, 1131–1141

    Article  Google Scholar 

  182. Lim, K.-W., Jung, W.-S., & Ko, Y.-B. (2015). Energy efficient quality-of-service for WLAN-based D2D communications. Ad Hoc Networks, 25, 102–116

    Article  Google Scholar 

  183. Swain, S. N., & Murthy, C. S. R. (2020). A novel energy-aware utility maximization for efficient device-to-device communication in LTE-WiFi networks under mixed traffic scenarios. Computer Networks, 167, 106995

    Article  Google Scholar 

  184. Ghahfarokhi, B. S., Azadmanesh, M., & Khorasani, S. K. (2018). Energy and spectrum efficient mobility-aware resource management for D2D multicasting. Computer Networks, 146, 47–64

    Article  Google Scholar 

  185. Liang, J.-M., Chang, P.-Y., Chen, J.-J., Huang, C.-F., & Tseng, Y.-C. (2018). Energy-efficient DRX scheduling for D2D communication in 5G networks. Journal of Network and Computer Applications, 116, 53–64

    Article  Google Scholar 

  186. Clausen, T. & Jacquet P. (2003). Optimized link state routing protocol (OLSR), 2070–1721.

  187. De Rango, F., Guerriero, F., & Fazio, P. (2010). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed systems, 23(4), 713–726

    Article  Google Scholar 

  188. Ramesh, V., Supriya K. S, & Subbaiah P. (2014). Design of novel energy conservative preemptive dynamic source routing for MANET. In Computing, Communication and Networking Technologies (ICCCNT), 2014 International Conference on, (pp. 1–7), IEEE.

  189. Kanagasundaram, H., & Kathirvel, A. (2018). EIMO-ESOLSR: energy efficient and security-based model for OLSR routing protocol in mobile ad-hoc network. IET Communications, 13(2019), 553–559.

    Google Scholar 

  190. Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). MEQSA-OLSRv2: A multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT. IEEE Access, 6, 76546–76572

    Article  Google Scholar 

  191. Ladas, A., Deepak, G. C., Pavlatos, N., & Politis, C. (2018). A selective multipath routing protocol for ubiquitous networks. Ad Hoc Networks, 77, 95–107

    Article  Google Scholar 

  192. Riasudheen, H., Selvamani, K., Mukherjee, S., & Divyasree, I. R. (2020). An efficient energy-aware routing scheme for cloud-assisted MANETs in 5G. Ad Hoc Networks, 97, 102021

    Article  Google Scholar 

  193. Kunz, T., & Alhalimi, R. (2010). Energy-efficient proactive routing in MANET: Energy metrics accuracy. Ad Hoc Networks, 8(7), 755–766

    Article  Google Scholar 

  194. Thorat, P., Raza, S. M., Kim, D. S., & Choo, H. (2017). Rapid recovery from link failures in software-defined networks. Journal of Communications and Networks, 19(6), 648–665. https://doi.org/10.1109/JCN.2017.000105

    Article  Google Scholar 

  195. Gazestani, A. H., & Ghorashi, S. A. (2018). Distributed diffusion-based spectrum sensing for cognitive radio sensor networks considering link failure. IEEE Sensors Journal, 18(20), 8617–8625. https://doi.org/10.1109/JSEN.2018.2866429

    Article  Google Scholar 

  196. Yan, X., Dong, P., Du, X., Zheng, T., Zhang, H., & Guizani, M. (2018). Congestion game with link failures for network selection in high-speed vehicular networks. IEEE Access, 6, 76165–76175. https://doi.org/10.1109/ACCESS.2018.2884766

    Article  Google Scholar 

  197. Fu, X., Yao, H., & Yang, Y. (2019). Modeling cascading failures for wireless sensor networks with node and link capacity. IEEE Transactions on Vehicular Technology, 68(8), 7828–7840. https://doi.org/10.1109/TVT.2019.2925013

    Article  Google Scholar 

  198. Bao, K., Matyjas, J. D., Hu, F., & Kumar, S. (2018). Intelligent software-defined mesh networks with link-failure adaptive traffic balancing. IEEE Transactions on Cognitive Communications and Networking, 4(2), 266–276. https://doi.org/10.1109/TCCN.2018.2790974

    Article  Google Scholar 

  199. P. H. Le and G. Pujolle, "A link-disjoint interference-aware multi-path routing protocol for mobile ad hoc network," 2011: Springer, pp. 649–661.

  200. De Rango, F., Guerriero, F., & Fazio, P. (2012). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed systems, 23(4), 713–726

    Article  Google Scholar 

  201. Joshi, R. D., & Rege, P. P. (2012). Implementation and analytical modelling of modified optimised link state routing protocol for network lifetime improvement. IET Communications, 6(10), 1270–1277. https://doi.org/10.1049/iet-com.2011.0257

    Article  Google Scholar 

  202. Li, Z., & Wu, Y. (2017). Smooth mobility and link reliability-based optimized link state routing scheme for manets. IEEE Communications Letters, 21(7), 1529–1532

    Article  Google Scholar 

  203. Li, Y., Chi, K., Chen, H., Wang, Z., & Zhu, Y. (2017). Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things Journal, 5(3), 1474–1484

    Article  Google Scholar 

  204. J. Yi and B. Parrein, "Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2)," 2070–1721, 2017.

  205. Jabbar, W. A., Ismail, M., & Nordin, R. (2017). Energy and mobility conscious multipath routing scheme for route stability and load balancing in MANETs. Simulation Modelling Practice and Theory, 77, 245–271

    Article  Google Scholar 

  206. Kacem, I., Sait, B., Mekhilef, S., & Sabeur, N. (2018). A new routing approach for mobile Ad Hoc systems based on fuzzy petri nets and ant system. IEEE Access, 6, 65705–65720

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamarul Ariffin Noordin or I. S. Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malathy, S., Jayarajan, P., Hindia, M.H.D.N. et al. Routing constraints in the device-to-device communication for beyond IoT 5G networks: a review. Wireless Netw 27, 3207–3231 (2021). https://doi.org/10.1007/s11276-021-02641-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02641-y

Keywords

Navigation