Abstract
Routing is fundamental in any wireless network for path selection, which provides the most effective way that legitimizes the data to be transmitted from a source to a destination device. In gigantic network demand nowadays, routing is pertinent to ensure fast and reliable data transfer. Ineffective routing may cause route flapping and degrade the overall Quality of Service (QoS). Meanwhile, Device-to-Device communications (D2D) is a technology that allows the devices to be connected without or partial involvement of the conventional cellular network. With these natures of qualities, D2D communication provides a reliable propitious medium that caters for the needs of many different telecommunications scenarios. The interconnectivity of multiple devices creates the Internet of Things (IoT), which will be an essential insistent in future technologies. With the dynamic nature of D2D technology, the routing approach act as a principal architecture that essential to be implemented in every niche D2D aspect. If wrong routing decisions are made in D2D communication, the QoS performance would be worse than the conventional cellular network. This paper present the state of the art of fundamentals, recent progress, current challenges, future directions, and potential routing applications for D2D and Beyond IoT 5G Networks. This review will also act as a guide and reference for future researchers and scientists to explore and integrate the routing technique in D2D communication and Beyond IoT 5G Networks.
Similar content being viewed by others
References
Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142. https://doi.org/10.1109/JIOT.2017.2683200
Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2018). A survey on 5G networks for the internet of things: Communication technologies and challenges. IEEE Access, 6, 3619–3647. https://doi.org/10.1109/ACCESS.2017.2779844
Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2018). A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Communications Surveys & Tutorials, 20(1), 416–464. https://doi.org/10.1109/COMST.2017.2771153
Metzger, F., Hoßfeld, T., Bauer, A., Kounev, S., & Heegaard, P. E. (2019). Modeling of aggregated IoT traffic and its application to an IoT cloud. Proceedings of the IEEE, 107(4), 679–694. https://doi.org/10.1109/JPROC.2019.2901578
Novo, O. (2018). Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet of Things Journal, 5(2), 1184–1195. https://doi.org/10.1109/JIOT.2018.2812239
Li, S., Da Xu, L., & Zhao, S. (2018). 5G internet of things: A survey. Journal of Industrial Information Integration, 10, 1–9
Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). A survey on 5G networks for the Internet of Things: Communication technologies and challenges. IEEE Access, 6, 3619–3647
Shafi, M., et al. (2017). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221. https://doi.org/10.1109/JSAC.2017.2692307
Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655
Wang, Y., Li, J., Huang, L., Jing, Y., Georgakopoulos, A., & Demestichas, P. (2014). 5G mobile: Spectrum broadening to higher-frequency bands to support high data rates. IEEE Vehicular technology magazine, 9(3), 39–46
Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., & Dai, H. (2018). A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions. IEEE Communications Surveys & Tutorials, 20(4), 3098–3130. https://doi.org/10.1109/COMST.2018.2841349
Olwal, T. O., Djouani, K., & Kurien, A. M. (2016). A survey of resource management toward 5G radio access networks. IEEE Communications Surveys & Tutorials, 18(3), 1656–1686
Yu, R., Ding, J., Huang, X., Zhou, M.-T., Gjessing, S., & Zhang, Y. (2016). Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach. IEEE Transactions on Vehicular Technology, 65(10), 7844–7856
Ferdouse, L., Ejaz, W., Raahemifar, K., Anpalagan, A., & Markandaier, M. (2017). Interference and throughput aware resource allocation for multi-class D2D in 5G networks. Iet Communications, 11(8), 1241–1250
Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. IEEE Wireless Communications, 23(1), 72–79
Hindia, M. H. D. N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2020). On platform to enable the cognitive radio over 5G networks. Wireless Personal Communications, 113(2), 1241–1262
Manap, S., Dimyati, K., Hindia, M. N., Talip, M. S. A., & Tafazolli, R. (2020). Survey of radio resource management in 5G heterogeneous networks. IEEE Access, 8, 131202–131223
Qamar, F., Hindia, M. H. D. N., Dimyati, K., Noordin, K. A., & Amiri, I. S. (2019). Interference management issues for the future 5G network: A review. Telecommunication Systems, 71(4), 627–643
Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137
Lee, J., et al. (2016). LTE-advanced in 3GPP Rel-13/14: An evolution toward 5G. IEEE Communications Magazine, 54(3), 36–42
Tilwari, V., & Kushwah, A. S. (2013). Performance analysis of Wi-Max 802.16 e physical layer using digital modulation techniques and code rates. International Journal of Engineering Research and Applications (IJERA), Volume, 3, 1449–1454
Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49
Ge, X., Cheng, H., Guizani, M., & Han, T. (2014). 5G wireless backhaul networks: challenges and research advance. arXiv preprint http://arxiv.org/abs/1412.7232.
Xiao, M., et al. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935. https://doi.org/10.1109/JSAC.2017.2719924
Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230. https://doi.org/10.1109/TAP.2017.2734243
Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine, 11(1), 64–75
Bani-Bakr, A., et al. (2020). Optimizing the number of fog nodes for finite fog radio access networks under multi-slope path loss model. Electronics, 9(12), 2175
Andrews, J. G., Bai, T., Kulkarni, M. N., Alkhateeb, A., Gupta, A. K., & Heath, R. W. (2017). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications, 65(1), 403–430. https://doi.org/10.1109/TCOMM.2016.2618794
Hong, W., Baek, K., & Ko, S. (2017). Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration. IEEE Transactions on Antennas and Propagation, 65(12), 6250–6261. https://doi.org/10.1109/TAP.2017.2740963
Moltchanov, D., Kovalchukov, R., Gerasimenko, M., Andreev, S., Koucheryavy, Y., & Gerla, M. (2019). Socially inspired relaying and proactive mode selection in mmwave vehicular communications. IEEE Internet of Things Journal, 6(3), 5172–5183. https://doi.org/10.1109/JIOT.2019.2898420
Liu, P., Renzo, M. D., & Springer, A. (2016). Line-of-sight spatial modulation for indoor mmwave communication at 60 GHz. IEEE Transactions on Wireless Communications, 15(11), 7373–7389. https://doi.org/10.1109/TWC.2016.2601616
Kumbhar, F. H., Saxena, N., & Roy, A. (2017). Reliable relay: Autonomous social D2D paradigm for 5G LoS communications. IEEE Communications Letters, 21(7), 1593–1596. https://doi.org/10.1109/LCOMM.2017.2682091
Ai, B., et al. (2017). On indoor millimeter wave massive MIMO channels: measurement and simulation. IEEE Journal on Selected Areas in Communications, 35(7), 1678–1690. https://doi.org/10.1109/JSAC.2017.2698780
Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT express, 4(4), 203–208
Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49
Liang, L., Li, G. Y., & Xu, W. (2017). Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications, 65(7), 3186–3197. https://doi.org/10.1109/TCOMM.2017.2699194
Wu, Y., Chen, J., Qian, L. P., Huang, J., & Shen, X. S. (2017). Energy-aware cooperative traffic offloading via device-to-device cooperations: An analytical approach. IEEE Transactions on Mobile Computing, 16(1), 97–114. https://doi.org/10.1109/TMC.2016.2539950
Wang, L., Tang, H., Wu, H., & Stüber, G. L. (2017). Resource allocation for D2D communications underlay in Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1159–1170. https://doi.org/10.1109/TVT.2016.2553124
Jameel, F., Hamid, Z., Jabeen, F., Zeadally, S., & Javed, M. A. (2018). A survey of device-to-device communications: Research issues and challenges. IEEE Communications Surveys & Tutorials, 20(3), 2133–2168. https://doi.org/10.1109/COMST.2018.2828120
Zhang, H., Liao, Y., & Song, L. (2017). D2D-U: device-to-device communications in unlicensed bands for 5G system. IEEE Transactions on Wireless Communications, 16(6), 3507–3519. https://doi.org/10.1109/TWC.2017.2683479
Gandotra, P., Jha, R. K., & Jain, S. (2017). A survey on device-to-device (D2D) communication: Architecture and security issues. Journal of Network and Computer Applications, 78, 9–29
Ahmad, M., Azam, M., Naeem, M., Iqbal, M., Anpalagan, A., & Haneef, M. (2017). Resource management in D2D communication: An optimization perspective. Journal of Network and Computer Applications, 93, 51–75
Gandotra, P., & Jha, R. K. (2017). A survey on green communication and security challenges in 5G wireless communication networks. Journal of Network and Computer Applications, 96, 39–61
Ali, A., Shah, G. A., Farooq, M. O., & Ghani, U. (2017). Technologies and challenges in developing Machine-to-Machine applications: A survey. Journal of Network and Computer Applications, 83, 124–139
Pescosolido, L., Conti, M. & Passarella, A. (2019). D2D Data Offloading in Vehicular Environments with Optimal Delivery Time Selection. arXiv preprint http://arxiv.org/abs/1901.01744.
Cheon, H.-R., & Kim, J.-H. (2019). Social-aware mobile data offloading algorithm through small cell backhaul network: Direct and indirect user influence perspectives. Computer Networks, 165, 106951
Sharafeddine, S., & Farhat, O. (2018). A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading. Ad Hoc Networks, 77, 42–53
Cheng, R.-S., Huang, C.-M., & Pan, S.-Y. (2018). WiFi offloading using the device-to-device (D2D) communication paradigm based on the Software Defined Network (SDN) architecture. Journal of Network and Computer Applications, 112, 18–28
Moghaddam, J. Z., Usman, M., & Granelli, F. (2018). A device-to-device communication-based disaster response network. IEEE Transactions on Cognitive Communications and Networking, 4(2), 288–298. https://doi.org/10.1109/TCCN.2018.2801339
Masaracchia, A., Nguyen, L. D., Duong, T. Q., & Nguyen, M. (2019). An energy-efficient clustering and routing framework for disaster relief network. IEEE Access, 7, 56520–56532. https://doi.org/10.1109/ACCESS.2019.2913909
Rong, H., Wang, Z., Jiang, H., Xiao, Z., & Zeng, F. (2019). Energy-aware clustering and routing in infrastructure failure areas with D2D communication. IEEE Internet of Things Journal, 6(5), 8645–8657. https://doi.org/10.1109/JIOT.2019.2922202
Wang, X., Wu, X., & Zhang, X. (2017). Optimizing opportunistic routing in asynchronous wireless sensor networks. IEEE Communications Letters, 21(10), 2302–2305. https://doi.org/10.1109/LCOMM.2017.2729557
Liu, H., Su, J., & Chou, C. (2017). On energy-efficient straight-line routing protocol for wireless sensor networks. IEEE Systems Journal, 11(4), 2374–2382. https://doi.org/10.1109/JSYST.2015.2448714
Wang, J., Yue, H., Hai, L., & Fang, Y. (2017). Spectrum-aware anypath routing in multi-hop cognitive radio networks. IEEE Transactions on Mobile Computing, 16(4), 1176–1187. https://doi.org/10.1109/TMC.2016.2582173
Sharma, D., & Bhondekar, A. P. (2018). Traffic and energy aware routing for heterogeneous wireless sensor networks. IEEE Communications Letters, 22(8), 1608–1611. https://doi.org/10.1109/LCOMM.2018.2841911
Pradittasnee, L., Camtepe, S., & Tian, Y. (2017). Efficient route update and maintenance for reliable routing in large-scale sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 144–156. https://doi.org/10.1109/TII.2016.2569523
Huang, H., Yin, H., Min, G., Zhang, J., Wu, Y., & Zhang, X. (2018). Energy-aware dual-path geographic routing to bypass routing holes in wireless sensor networks. IEEE Transactions on Mobile Computing, 17(6), 1339–1352. https://doi.org/10.1109/TMC.2017.2771424
Chen, G., Tang, J., & Coon, J. P. (2018). Optimal routing for multihop social-based D2D communications in the internet of things. IEEE Internet of Things Journal, 5(3), 1880–1889. https://doi.org/10.1109/JIOT.2018.2817024
Shaikh, F. S., & Wismüller, R. (2018). Routing in multi-hop cellular device-to-device (D2D) networks: A survey. IEEE Communications Surveys & Tutorials, 20(4), 2622–2657. https://doi.org/10.1109/COMST.2018.2848108
Al-Turjman, F., Deebak, B. D., & Mostarda, L. (2019). Energy aware resource allocation in multi-hop multimedia routing via the smart edge device. IEEE Access, 7, 151203–151214. https://doi.org/10.1109/ACCESS.2019.2945797
Liu, X., Li, Z., Yang, P., & Dong, Y. (2017). Information-centric mobile ad hoc networks and content routing: a survey. Ad Hoc Networks, 58, 255–268
Bello, O., Zeadally, S., & Badra, M. (2017). Network layer inter-operation of Device-to-Device communication technologies in Internet of Things (IoT). Ad Hoc Networks, 57, 52–62
Wenbin, Y., Yin, C., Ming, Z., & Dongbin, W. (2017). QoS-oriented packet scheduling scheme for opportunistic networks. The Journal of China Universities of Posts and Telecommunications, 24(3), 51–57
Xu, Y., Liu, J., Shen, Y., Jiang, X., & Shiratori, N. (2017). Physical layer security-aware routing and performance tradeoffs in ad hoc networks. Computer Networks, 123, 77–87
Kazeminia, M., Mehrjoo, M., & Tomasin, S. (2019). Delay-aware spectrum sharing solutions for mixed cellular and D2D links. Computer Communications, 139, 58–66
Kolios, P., Papadaki, K., & Friderikos, V. (2016). Efficient cellular load balancing through mobility-enriched vehicular communications. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2971–2983. https://doi.org/10.1109/TITS.2015.2505304
Zhang, X., Huang, P., Guo, L., & Fang, Y. (2019). Social-aware energy-efficient data offloading with strong stability. IEEE/ACM Transactions on Networking, 27(4), 1515–1528. https://doi.org/10.1109/TNET.2019.2924875
Singh, D., & Ghosh, S. C. (2019). Mobility-aware relay selection in 5G D2D communication using stochastic model. IEEE Transactions on Vehicular Technology, 68(3), 2837–2849. https://doi.org/10.1109/TVT.2019.2893995
de Mello, M. O. M. C., Borges, V. C. M., Pinto, L. L., & Cardoso, K. V. (2016). Improving load balancing, path length, and stability in low-cost wireless backhauls. Ad Hoc Networks, 48, 16–28
Zhang, H., Song, L., & Zhang, Y. J. (2018). Load balancing for 5G ultra-dense networks using device-to-device communications. IEEE Transactions on Wireless Communications, 17(6), 4039–4050. https://doi.org/10.1109/TWC.2018.2819648
Sanyal, S., & Zhang, P. (2018). Improving quality of data: IoT data aggregation using device to device communications. IEEE Access, 6, 67830–67840. https://doi.org/10.1109/ACCESS.2018.2878640
Xu, C., Feng, J., Zhou, Z., Wu, J., & Perera, C. (2019). Cross-layer optimization for cooperative content distribution in multihop device-to-device networks. IEEE Internet of Things Journal, 6(1), 278–287. https://doi.org/10.1109/JIOT.2017.2741718
Lei, L., Shen, X., Dohler, M., Lin, C., & Zhong, Z. (2014). Queuing models with applications to mode selection in device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 13(12), 6697–6715. https://doi.org/10.1109/TWC.2014.2335734
AlQahtani, S., & Alotaibi, A. (2019). A route stability-based multipath QoS routing protocol in cognitive radio ad hoc networks. Wireless Networks, 25(5), 2931–2951
Al-Kharasani, N. M., Zukarnain, Z. A., Subramaniam, S. K., & Hanapi, Z. M. (2020). An adaptive relay selection scheme for enhancing network stability in VANETs. IEEE Access, 8, 128757–128765
Mohamed, E. M., Elhalawany, B. M., Khallaf, H. S., Zareei, M., Zeb, A., & Abdelghany, M. A. (2020). Relay probing for millimeter wave multi-hop D2D networks. IEEE Access, 8, 30560–30574
Basak, S., & Acharya, T. (2020). On energy efficient secure routing in multi-hop underlay D2D communications for IoT applications. Ad Hoc Networks, 108, 102275
Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198
Lin, C.-S., & Sou, S.-I. (2019). QoS-aware dynamic bandwidth reallocation with deadline assurance for multipath data offloading. Computer Networks, 153, 103–112
Kılıç, G., & Girici, T. (2019). Joint channel and power allocation for device-to-device underlay. Ad Hoc Networks, 83, 158–167
Li, Y., Liang, Y., Liu, Q., & Wang, H. (2018). Resources allocation in multicell D2D communications for internet of things. IEEE Internet of Things Journal, 5(5), 4100–4108. https://doi.org/10.1109/JIOT.2018.2870614
Yang, Z.-Y., & Kuo, Y.-W. (2017). Efficient resource allocation algorithm for overlay D2D communication. Computer Networks, 124, 61–71
Esmat, H. H., Elmesalawy, M. M., & Ibrahim, I. I. (2018). Uplink resource allocation and power control for D2D communications underlaying multi-cell mobile networks. AEU-International Journal of Electronics and Communications, 93, 163–171
Lin, Z., Huang, L., Zhao, Y., Du, X., & Guizani, M. (2017). P2P-based resource allocation with coalitional game for D2D networks. Pervasive and Mobile Computing, 42, 487–497
Gong, W., Li, G., & Li, B. (2018). System utility based resource allocation for D2D multicast communication in software-defined cellular networks. AEU-International Journal of Electronics and Communications, 96, 138–143
Ali, M., Qaisar, S., Naeem, M., Mumtaz, S., & Rodrigues, J. J. P. C. (2017). Combinatorial resource allocation in D2D assisted heterogeneous relay networks. Future Generation Computer Systems, 107(2020), 956–964
Bakhsh, Z. M., Moghaddam, J. Z., & Ardebilipour, M. (2019). An interference management approach for CR-assisted cooperative D2D communication. AEU-International Journal of Electronics and Communications, 115, 153026
Najeh, S. (2020). Joint mode selection and power control for D2D underlaid cellular networks. Physical Communication, 38, 100917
Amodu, O. A., Othman, M., Noordin, N. K., & Ahmad, I. (2019). Transmission capacity analysis of relay-assisted D2D cellular networks with M2M coexistence. Computer Networks, 164, 106887
Wang, D.-L., Sun, Q.-Y., Li, Y.-Y., & Liu, X.-R. (2019). Optimal energy routing design in energy internet with multiple energy routing centers using artificial neural network-based reinforcement learning method. Applied Sciences, 9(3), 520
Liu, T., Lui, J. C. S., Ma, X., & Jiang, H. (2018). Enabling relay-assisted D2D communication for cellular networks: Algorithm and protocols. IEEE Internet of Things Journal, 5(4), 3136–3150. https://doi.org/10.1109/JIOT.2018.2834517
Cao, Y., & Sun, Z. (2013). Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges. IEEE Communications Surveys & Tutorials, 15(2), 654–677. https://doi.org/10.1109/SURV.2012.042512.00053
Abolhasan, M., Abdollahi, M., Ni, W., Jamalipour, A., Shariati, N., & Lipman, J. (2018). A routing framework for offloading traffic from cellular networks to SDN-based multi-hop device-to-device networks. IEEE Transactions on Network and Service Management, 15(4), 1516–1531. https://doi.org/10.1109/TNSM.2018.2875696
Tilwari, V., et al. (2020). MCLMR: A multicriteria based multipath routing in the mobile ad hoc networks. Wireless Personal Communications, 112, 1–23
Tilwari, V., Dimyati, K., Hindia, M. H. D., Mohmed Noor Izam, T. F. B. T., & Amiri, I. S. (2020). EMBLR: A high-performance optimal routing approach for D2D communications in large-scale IoT 5G network. Symmetry, 12(3), 438
Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences, 9(8), 1582
Malathy, S., et al. (2020). An optimal network coding based backpressure routing approach for massive IoT network. Wireless Networks, 26, 1–18
Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad-hoc networks. International Journal of Technology, 10(7), 1376–1384
Amiri, I. S. et al. (2019). DABPR: a large-scale internet of things-based data aggregation back pressure routing for disaster management. Wireless Networks, pp. 1–22.
Razzaq, M., & Shin, S. (2019). Fuzzy-logic dijkstra-based energy-efficient algorithm for data transmission in WSNs. Sensors, 19(5), 1040
Huang, C., Zhai, B., Tang, A., & Wang, X. (2019). Virtual mesh networking for achieving multi-hop D2D communications in 5G networks. Ad Hoc Networks, 94, 101936
Hamdi, M., & Zaied, M. (2019). Resource allocation based on hybrid genetic algorithm and particle swarm optimization for D2D multicast communications. Applied Soft Computing, 83, 105605
Pawar, P., & Trivedi, A. (2019). Interference-aware channel assignment and power allocation for device-to-device communication underlaying cellular network. AEU-International Journal of Electronics and Communications, 112, 152928
Vallet, J., Brun, O., & Prabhu, B. (2016). A game-theoretic algorithm for non-linear single-path routing problems. Electronic Notes in Discrete Mathematics, 52, 77–84
Simha, R., & Narahari, B. (1992). Single path routing with delay considerations. Computer Networks and ISDN Systems, 24(5), 405–419
Sahin, D., Gungor, V. C., Kocak, T., & Tuna, G. (2014). Quality-of-service differentiation in single-path and multi-path routing for wireless sensor network-based smart grid applications. Ad Hoc Networks, 22, 43–60
Macit, M., Gungor, V. C., & Tuna, G. (2014). Comparison of QoS-aware single-path vs. multi-path routing protocols for image transmission in wireless multimedia sensor networks. Ad hoc networks, 19, 132–141
Al-Baghdadi, A., Lian, X., & Cheng, E. (2020). Efficient path routing over road networks in the presence of ad-hoc obstacles. Information Systems, 88, 101453
Kim, H., Kim, H., Paek, J., & Bahk, S. (2017). Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks. IEEE Transactions on Mobile Computing, 16(4), 964–979. https://doi.org/10.1109/TMC.2016.2585107
Selvi, P. F. A., & Manikandan, M. S. K. (2017). Ant based multipath backbone routing for load balancing in MANET. IET Communications, 11(1), 136–141. https://doi.org/10.1049/iet-com.2016.0574
Shukla, S., Bhardwaj, O., Abouzeid, A. A., Salonidis, T., & He, T. (2018). Proactive retention-aware caching with multi-path routing for wireless edge networks. IEEE Journal on Selected Areas in Communications, 36(6), 1286–1299. https://doi.org/10.1109/JSAC.2018.2844999
Pan, J., Popa, I. S., & Borcea, C. (2017). DIVERT: a distributed vehicular traffic re-routing system for congestion avoidance. IEEE Transactions on Mobile Computing, 16(1), 58–72. https://doi.org/10.1109/TMC.2016.2538226
Cao, Z., Jiang, S., Zhang, J., & Guo, H. (2017). A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion. IEEE Transactions on Intelligent Transportation Systems, 18(7), 1958–1973. https://doi.org/10.1109/TITS.2016.2613997
Ferronato, J. J., & Trentin, M. A. S. (2017). Analysis of routing protocols OLSR, AODV and ZRP in real urban vehicular scenario with density variation. IEEE Latin America Transactions, 15(9), 1727–1734. https://doi.org/10.1109/TLA.2017.8015079
Siraj, M. N., Ahmed, Z., Hanif, M. K., Chaudary, M. H., Khan, S. A., & Javaid, N. (2018). A hybrid routing protocol for wireless distributed networks. IEEE Access, 6, 67244–67260. https://doi.org/10.1109/ACCESS.2018.2875952
Zhang, H., Wang, X., Memarmoshrefi, P., & Hogrefe, D. (2017). A survey of ant colony optimization based routing protocols for mobile ad hoc networks. IEEE Access, 5, 24139–24161. https://doi.org/10.1109/ACCESS.2017.2762472
Haque, I. T. (2015). On the overheads of ad hoc routing schemes. IEEE Systems Journal, 9(2), 605–614. https://doi.org/10.1109/JSYST.2013.2294881
Mitra, R., & Sharma, S. (2018). Proactive data routing using controlled mobility of a mobile sink in Wireless Sensor Networks. Computers & Electrical Engineering, 70, 21–36
Mohamed, R. E., Ghanem, W. R., Khalil, A. T., Elhoseny, M., Sajjad, M., & Mohamed, M. A. (2018). Energy efficient collaborative proactive routing protocol for wireless sensor network. Computer Networks, 142, 154–167
Angelelli, E., Morandi, V., & Speranza, M. G. (2018). Congestion avoiding heuristic path generation for the proactive route guidance. Computers & Operations Research, 99, 234–248
Taha, A., Alsaqour, R., Uddin, M., Abdelhaq, M., & Saba, T. (2017). Energy efficient multipath routing protocol for mobile ad-hoc network using the fitness function. IEEE Access, 5, 10369–10381. https://doi.org/10.1109/ACCESS.2017.2707537
Kuo, W., & Chu, S. (2016). Energy efficiency optimization for mobile Ad hoc networks. IEEE Access, 4, 928–940. https://doi.org/10.1109/ACCESS.2016.2538269
Bai, F., Sadagopan, N., Krishnamachari, B., & Helmy, A. (2004). Modeling path duration distributions in MANETs and their impact on reactive routing protocols. IEEE Journal on Selected Areas in Communications, 22(7), 1357–1373. https://doi.org/10.1109/JSAC.2004.829353
Muchtar, F., Abdullah, A. H., Hassan, S., Khader, A. T., & Zamli, K. Z. (2019). Energy conservation of content routing through wireless broadcast control in NDN based MANET: A review. Journal of Network and Computer Applications, 131, 109–132
Chithaluru, P., Tiwari, R., & Kumar, K. (2019). AREOR–Adaptive ranking based energy efficient opportunistic routing scheme in Wireless Sensor Network. Computer Networks, 162, 106863
Bello-Salau, H., Aibinu, A. M., Wang, Z., Onumanyi, A. J., Onwuka, E. N., & Dukiya, J. J. (2019). An optimized routing algorithm for vehicle ad-hoc networks. Engineering Science and Technology, an International Journal, 22(3), 754–766
Al-Dhief, F. T., Sabri, N., Fouad, S., Latiff, N. M. A., & Albader, M. A. A. (2017). A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective. Journal of King Saud University-Computer and Information Sciences, 31(2019), 135–146
Hurley-Smith, D., Wetherall, J., & Adekunle, A. (2017). SUPERMAN: Security using pre-existing routing for mobile ad hoc networks. IEEE Transactions on Mobile Computing, 16(10), 2927–2940. https://doi.org/10.1109/TMC.2017.2649527
Rosati, S., Krużelecki, K., Heitz, G., Floreano, D., & Rimoldi, B. (2016). Dynamic routing for flying ad hoc networks. IEEE Transactions on Vehicular Technology, 65(3), 1690–1700. https://doi.org/10.1109/TVT.2015.2414819
Torrieri, D., Talarico, S., & Valenti, M. C. (2015). Performance comparisons of geographic routing protocols in mobile ad hoc networks. IEEE Transactions on Communications, 63(11), 4276–4286. https://doi.org/10.1109/TCOMM.2015.2477337
Govindasamy, J., & Punniakody, S. (2018). A comparative study of reactive, proactive and hybrid routing protocol in wireless sensor network under wormhole attack. Journal of Electrical Systems and Information Technology, 5(3), 735–744
Boussoufa-Lahlah, S., Semchedine, F., & Bouallouche-Medjkoune, L. (2018). Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Vehicular Communications, 11, 20–31
Muchtar, F., Abdullah, A. H., Hassan, S., & Masud, F. (2018). Energy conservation strategies in Host Centric Networking based MANET: A review. Journal of Network and Computer Applications, 111, 77–98
Al Mojamed, M., & Kolberg, M. (2016). Structured Peer-to-Peer overlay deployment on MANET: A survey. Computer Networks, 96, 29–47
Ramanathan, R., & Redi, J. (2002). A brief overview of ad hoc networks: challenges and directions. IEEE communications Magazine, 40(5), 20–22
Malik, S., & Sahu, P. K. (2019). A comparative study on routing protocols for VANETs. Heliyon, 5(8), e02340
Ma, Z., Li, B., Yan, Z., & Yang, M. (2020). QoS-Oriented joint optimization of resource allocation and concurrent scheduling in 5G millimeter-wave network. Computer Networks, 166, 106979
Liu, X., Yang, B., Jiang, X., Ma, L., & Shen, S. (2020). On social-aware data uploading study of D2D-enabled cellular networks. Computer Networks, 166, 106955
Yang, B., Wu, Z., Shen, Y., & Jiang, X. (2019). packet delivery ratio and energy consumption in multicast delay tolerant MANETs with power control. Computer Networks, 161, 150–161
Lin, Z., & Wang, P. (2019). A review of data sets of short-range wireless networks. Computer Communications, 147, 138–158
Mei, H., Lu, H., & Peng, L. (2019). Data offloading in cache-enabled cross-haul networks. Computer Communications, 142, 1–8
Wang, Y., Yu, Z., Huang, J., & Choi, C. (2019). A novel energy-efficient neighbor discovery procedure in a wireless self-organization network. Information Sciences, 476, 429–438
Zhao, Z., Xu, K., Hui, G., & Hu, L. (2018). An energy-efficient clustering routing protocol for wireless sensor networks based on AGNES with balanced energy consumption optimization. Sensors, 18(11), 3938
Hasan, M. Z., Al-Rizzo, H., & Al-Turjman, F. (2017). A survey on multipath routing protocols for qos assurances in real-time wireless multimedia sensor networks. IEEE Communications Surveys & Tutorials, 19(3), 1424–1456. https://doi.org/10.1109/COMST.2017.2661201
Maheswar, R., et al. (2021). CBPR: A cluster-based backpressure routing for the internet of things. Wireless Personal Communications, 116, 1–19.
Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile Ad Hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78–93. https://doi.org/10.1109/SURV.2008.080407
Boushaba, A., Benabbou, A., Benabbou, R., Zahi, A., & Oumsis, M. (2014). An enhanced MP-OLSR protocol for MANETs. In 2014 International Conference on Next Generation Networks and Services (NGNS), (pp. 73–79) 28–30 May 2014 2014, https://doi.org/10.1109/NGNS.2014.6990231.
Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials, 18(2), 1123–1152. https://doi.org/10.1109/COMST.2015.2495297
Pu, C. (2018). Jamming-resilient multipath routing protocol for flying Ad Hoc networks. IEEE Access, 6, 68472–68486. https://doi.org/10.1109/ACCESS.2018.2879758
Khalid, M., Ahmad, F., Arshad, M., Khalid, W., Ahmad, N., & Cao, Y. (2019). E2MR: energy-efficient multipath routing protocol for underwater wireless sensor networks. IET Networks, 8(5), 321–328. https://doi.org/10.1049/iet-net.2018.5203
Valerio, V. D., Presti, F. L., Petrioli, C., Picari, L., Spaccini, D., & Basagni, S. (2019). CARMA: Channel-aware reinforcement learning-based multi-path adaptive routing for underwater wireless sensor networks. IEEE Journal on Selected Areas in Communications, 37(11), 2634–2647. https://doi.org/10.1109/JSAC.2019.2933968
Khalid, M., Cao, Y., Ahmad, N., Khalid, W., & Dhawankar, P. (2018). Radius-based multipath courier node routing protocol for acoustic communications. IET Wireless Sensor Systems, 8(4), 183–189. https://doi.org/10.1049/iet-wss.2017.0165
Vinitha, A., & Rukmini, M. S. S. (2019). Secure and energy aware multi-hop routing protocol in WSN using Taylor-based hybrid optimization algorithm. Journal of King Saud University-Computer and Information Sciences, 33(2021), 1–12
Guirguis, A., Karmoose, M., Habak, K., El-Nainay, M., & Youssef, M. (2018). Cooperation-based multi-hop routing protocol for cognitive radio networks. Journal of Network and Computer Applications, 110, 27–42
Geng, H., Shi, X., Wang, Z., & Yin, X. (2018). A hop-by-hop dynamic distributed multipath routing mechanism for link state network. Computer Communications, 116, 225–239
Lim, C. L., Goh, C., & Li, Y. (2019). Long-term routing stability of wireless sensor networks in a real-world environment. IEEE Access, 7, 74351–74360
Fu, X., Yao, H., & Yang, Y. (2019). Cascading Failures in Wireless Sensor Networks with load Redistribution of Links and Nodes. Ad Hoc Networks, 93, 101900
Abd-Elmagid, M. A., ElBatt, T., & Seddik, K. G. (2019). Optimization of energy-constrained wireless powered communication networks with heterogeneous nodes. Wireless Networks, 25(2), 713–730
Liu, X., Wen, Z., Liu, D., Zou, J., & Li, S. (2019). Joint source and relay beamforming design in wireless multi-hop sensor networks with SWIPT. Sensors, 19(1), 182
Song, M., & Zheng, M. (2018). Energy efficiency optimization for wireless powered sensor networks with nonorthogonal multiple access. IEEE Sensors Letters, 2(1), 1–4. https://doi.org/10.1109/LSENS.2018.2792454
Tang, L., Yang, X., Wu, X., Cui, T., & Chen, Q. (2018). Queue stability-based virtual resource allocation for virtualized wireless networks with self-backhauls. IEEE Access, 6, 13604–13616. https://doi.org/10.1109/ACCESS.2018.2797088
Vu, T. K., Bennis, M., Debbah, M., & Latva-Aho, M. (2019). Joint path selection and rate allocation framework for 5G self-backhauled mm-wave networks. IEEE Transactions on Wireless Communications, 18(4), 2431–2445. https://doi.org/10.1109/TWC.2019.2904275
Li, M., Zhang, L., Li, V. O., Shan, X., & Ren, Y. (2005). An energy-aware multipath routing protocol for mobile ad hoc networks. ACM Sigcomm Asia, 5, 10–12
Villasenor-Gonzalez, L., Ge, Y., & Lament, L. (2005). HOLSR: a hierarchical proactive routing mechanism for mobile ad hoc networks. IEEE Communications Magazine, 43(7), 118–125
Mnaouer, A. B., Chen, L., Foh, C. H., & Tantra, J. W. (2007). OPHMR: an optimized polymorphic hybrid multicast routing protocol for MANET. IEEE Transactions on Mobile Computing, 6(5), 551–562
Wu, Z.-Y., & Song, H.-T. (2008). Ant-based energy-aware disjoint multipath routing algorithm for MANETs. The Computer Journal, 53(2), 166–176
Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad hoc networks, 9(1), 28–47
Huang, M., Liang, Q., & Xi, J. (2012). A parallel disjointed multi-path routing algorithm based on OLSR and energy in ad hoc networks. Journal of Networks, 7(4), 613
Sarkar, S., & Datta, R. (2017). Mobility-aware route selection technique for mobile ad hoc networks. IET Wireless Sensor Systems, 7(3), 55–64
Sobral, J. V. V., Rodrigues, J. J. P. C., Rabêlo, R. A. L., Saleem, K., & Kozlov, S. A. (2019). Improving the performance of LOADng routing protocol in mobile IoT scenarios. IEEE Access, 7, 107032–107046
Wang, Z., Bulut, E. & Szymanski, B. K. (2009). Energy efficient collision aware multipath routing for wireless sensor networks. In Communications, 2009. ICC'09. IEEE International Conference on, pp. 1–5, IEEE.
Badis, H. & Al Agha, K. (2004). QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay. vol. 4, pp. 2181–2184, IEEE.
Villasenor-Gonzalez, L., Ying, G., & Lament, L. (2005). HOLSR: a hierarchical proactive routing mechanism for mobile ad hoc networks. IEEE Communications Magazine, 43(7), 118–125. https://doi.org/10.1109/MCOM.2005.1470838
Wang, Z., Chen, Y., & Li, C. (2014). PSR: A lightweight proactive source routing protocol for mobile ad hoc networks. IEEE transactions on Vehicular Technology, 63(2), 859–868
Pham, Q., & Hwang, W. (2017). Network utility maximization-based congestion control over wireless networks: A survey and potential directives. IEEE Communications Surveys & Tutorials, 19(2), 1173–1200. https://doi.org/10.1109/COMST.2016.2619485
Yi, J. & Parrein, B. (2017). Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2).
Bhattacharya, A., & Sinha, K. (2017). An efficient protocol for load-balanced multipath routing in mobile ad hoc networks. Ad Hoc Networks, 63, 104–114
Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2018). A distributed energy-harvesting-aware routing algorithm for heterogeneous IoT networks. IEEE Transactions on Green Communications and Networking, 2(4), 1115–1127
Debroy, S., Samanta, P., Bashir, A., & Chatterjee, M. (2019). SpEED-IoT: Spectrum aware energy efficient routing for device-to-device IoT communication. Future Generation Computer Systems, 93, 833–848
Mukherjee, T., Gupta, S. K., & Varsamopoulos, G. J. P. E. (2009). Energy optimization for proactive unicast route maintenance in MANETs under end-to-end reliability requirements. Performance Evaluation, 66(3–5), 141–157
Huynh, D.-T., Chen, M., Huynh, T.-T., & Hai, C. H. (2019). Energy consumption optimization for green Device-to-Device multimedia communications. Future Generation Computer Systems, 92, 1131–1141
Lim, K.-W., Jung, W.-S., & Ko, Y.-B. (2015). Energy efficient quality-of-service for WLAN-based D2D communications. Ad Hoc Networks, 25, 102–116
Swain, S. N., & Murthy, C. S. R. (2020). A novel energy-aware utility maximization for efficient device-to-device communication in LTE-WiFi networks under mixed traffic scenarios. Computer Networks, 167, 106995
Ghahfarokhi, B. S., Azadmanesh, M., & Khorasani, S. K. (2018). Energy and spectrum efficient mobility-aware resource management for D2D multicasting. Computer Networks, 146, 47–64
Liang, J.-M., Chang, P.-Y., Chen, J.-J., Huang, C.-F., & Tseng, Y.-C. (2018). Energy-efficient DRX scheduling for D2D communication in 5G networks. Journal of Network and Computer Applications, 116, 53–64
Clausen, T. & Jacquet P. (2003). Optimized link state routing protocol (OLSR), 2070–1721.
De Rango, F., Guerriero, F., & Fazio, P. (2010). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed systems, 23(4), 713–726
Ramesh, V., Supriya K. S, & Subbaiah P. (2014). Design of novel energy conservative preemptive dynamic source routing for MANET. In Computing, Communication and Networking Technologies (ICCCNT), 2014 International Conference on, (pp. 1–7), IEEE.
Kanagasundaram, H., & Kathirvel, A. (2018). EIMO-ESOLSR: energy efficient and security-based model for OLSR routing protocol in mobile ad-hoc network. IET Communications, 13(2019), 553–559.
Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). MEQSA-OLSRv2: A multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT. IEEE Access, 6, 76546–76572
Ladas, A., Deepak, G. C., Pavlatos, N., & Politis, C. (2018). A selective multipath routing protocol for ubiquitous networks. Ad Hoc Networks, 77, 95–107
Riasudheen, H., Selvamani, K., Mukherjee, S., & Divyasree, I. R. (2020). An efficient energy-aware routing scheme for cloud-assisted MANETs in 5G. Ad Hoc Networks, 97, 102021
Kunz, T., & Alhalimi, R. (2010). Energy-efficient proactive routing in MANET: Energy metrics accuracy. Ad Hoc Networks, 8(7), 755–766
Thorat, P., Raza, S. M., Kim, D. S., & Choo, H. (2017). Rapid recovery from link failures in software-defined networks. Journal of Communications and Networks, 19(6), 648–665. https://doi.org/10.1109/JCN.2017.000105
Gazestani, A. H., & Ghorashi, S. A. (2018). Distributed diffusion-based spectrum sensing for cognitive radio sensor networks considering link failure. IEEE Sensors Journal, 18(20), 8617–8625. https://doi.org/10.1109/JSEN.2018.2866429
Yan, X., Dong, P., Du, X., Zheng, T., Zhang, H., & Guizani, M. (2018). Congestion game with link failures for network selection in high-speed vehicular networks. IEEE Access, 6, 76165–76175. https://doi.org/10.1109/ACCESS.2018.2884766
Fu, X., Yao, H., & Yang, Y. (2019). Modeling cascading failures for wireless sensor networks with node and link capacity. IEEE Transactions on Vehicular Technology, 68(8), 7828–7840. https://doi.org/10.1109/TVT.2019.2925013
Bao, K., Matyjas, J. D., Hu, F., & Kumar, S. (2018). Intelligent software-defined mesh networks with link-failure adaptive traffic balancing. IEEE Transactions on Cognitive Communications and Networking, 4(2), 266–276. https://doi.org/10.1109/TCCN.2018.2790974
P. H. Le and G. Pujolle, "A link-disjoint interference-aware multi-path routing protocol for mobile ad hoc network," 2011: Springer, pp. 649–661.
De Rango, F., Guerriero, F., & Fazio, P. (2012). Link-stability and energy aware routing protocol in distributed wireless networks. IEEE Transactions on Parallel and Distributed systems, 23(4), 713–726
Joshi, R. D., & Rege, P. P. (2012). Implementation and analytical modelling of modified optimised link state routing protocol for network lifetime improvement. IET Communications, 6(10), 1270–1277. https://doi.org/10.1049/iet-com.2011.0257
Li, Z., & Wu, Y. (2017). Smooth mobility and link reliability-based optimized link state routing scheme for manets. IEEE Communications Letters, 21(7), 1529–1532
Li, Y., Chi, K., Chen, H., Wang, Z., & Zhu, Y. (2017). Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things Journal, 5(3), 1474–1484
J. Yi and B. Parrein, "Multipath Extension for the Optimized Link State Routing Protocol Version 2 (OLSRv2)," 2070–1721, 2017.
Jabbar, W. A., Ismail, M., & Nordin, R. (2017). Energy and mobility conscious multipath routing scheme for route stability and load balancing in MANETs. Simulation Modelling Practice and Theory, 77, 245–271
Kacem, I., Sait, B., Mekhilef, S., & Sabeur, N. (2018). A new routing approach for mobile Ad Hoc systems based on fuzzy petri nets and ant system. IEEE Access, 6, 65705–65720
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Malathy, S., Jayarajan, P., Hindia, M.H.D.N. et al. Routing constraints in the device-to-device communication for beyond IoT 5G networks: a review. Wireless Netw 27, 3207–3231 (2021). https://doi.org/10.1007/s11276-021-02641-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-021-02641-y