[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Efficient user pairing algorithm for enhancement of spectral efficiency and interference cancelation in downlink NOMA system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A new subcarrier-user allocation algorithm for the downlink non-orthogonal multiple access system is presented in this paper. The proposed algorithm aims to enhance the spectral efficiency of the system and the successive interference cancelation performance by guaranteeing a high difference in channel-gain between the paired users per subcarrier. To enhance the spectral efficiency, the proposed algorithm provides a higher priority to the subcarrier that has a higher best (maximum) channel gain value rather than that has a lower best channel gain value. Also, it pairs the strong user with the second minimum channel-gain user rather than the minimum channel gain user. Besides, the proposed algorithm divides the subcarriers into two groups according to the standard deviation of the channel gain of each subcarrier. Then, it gives the priority to the group with low standard deviation values during subcarrier-user allocation to guarantee a high difference in channel-gain between the paired users per subcarrier. Later, fractional transmit power allocation is applied to distribute the subcarrier power between the paired users. Simulation results prove that the proposed algorithm improves the spectral efficiency of the system, and guarantees a significantly higher difference in channel-gain between the paired users per subcarrier compared to the conventional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys & Tutorials, 20(3), 2294–2323. https://doi.org/10.1109/comst.2018.2835558.

    Article  Google Scholar 

  2. Shin, W., Vaezi, M., Lee, B., Love, D. J., Lee, J., & Poor, H. V. (2017). Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Communications Magazine, 55(10), 176–183. https://doi.org/10.1109/mcom.2017.1601065.

    Article  Google Scholar 

  3. Wang, Q., & Zhao, F. (2019). Joint spectrum and power allocation for NOMA enhanced relaying networks. IEEE Access, 7, 27008–27016. https://doi.org/10.1109/access.2019.2900225.

    Article  Google Scholar 

  4. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys & Tutorials, 19(2), 721–742. https://doi.org/10.1109/comst.2016.2621116.

    Article  Google Scholar 

  5. Dai, L., Wang, B., Yuan, Y., Han, S. C. I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81. https://doi.org/10.1109/mcom.2015.7263349.

    Article  Google Scholar 

  6. Song, L., Li, Y., Ding, Z., & Poor, H. V. (2017). Resource management in non-orthogonal multiple access networks for 5G and beyond. IEEE Network, 31(4), 8–14. https://doi.org/10.1109/mnet.2017.1600287.

    Article  Google Scholar 

  7. Di, B., Song, L., & Li, Y. (2016). Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks. IEEE Transactions on Wireless Communications, 15(11), 7686–7698. https://doi.org/10.1109/twc.2016.2606100.

    Article  Google Scholar 

  8. Shahab, M. B., & Shin, S. Y. (2017). A generalized M-users pairing scheme for non orthogonal multiple access. Annual Summer Conference of the Korean Institute of Communication Sciences, 2017, 375–376.

    Google Scholar 

  9. Islam, S. M. R., Zeng, M., Dobre, O. A., & Kwak, K. (2018). Resource allocation for downlink NOMA systems: Key techniques and open issues. IEEE Wireless Communications, 25(2), 40–47. https://doi.org/10.1109/mwc.2018.1700099.

    Article  Google Scholar 

  10. Shahab, M. B., et al. (2016). User pairing schemes for capacity maximization in non-orthogonal multiple access systems. Wireless Communications and Mobile Computing, 16(17), 2884–2894. https://doi.org/10.1002/wcm.2736.

    Article  Google Scholar 

  11. Kenichi, H., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, 98(3), 403–414. https://doi.org/10.1587/transcom.e98.b.403.

    Article  Google Scholar 

  12. Ding, Z., Fan, P., & Poor, H. V. (2015). User pairing in non-orthogonal multiple access downlink transmissions. In IEEE global communications conference (GLOBECOM), San Diego (pp. 1–5). https://doi.org/10.1109/glocom.2015.7417061.

  13. Ding, Z., Fan, P., & Poor, H. V. (2016). Impact of user pairing on 5G non-orthogonal multiple-access downlink transmissions. IEEE Transactions on Vehicular Technology, 65(8), 6010–6023. https://doi.org/10.1109/tvt.2015.2480766.

    Article  Google Scholar 

  14. Zhang, H., Zhang, D., Meng, W., & Li, C. (2016). User pairing algorithm with SIC in non-orthogonal multiple access system. In IEEE international conference on communications (ICC), Kuala Lumpur (pp. 1–6). https://doi.org/10.1109/icc.2016.7511620.

  15. Shahab, M. B., Kader, M. F., & Shin, S. Y. (2016). A virtual user pairing scheme to optimally utilize the spectrum of unpaired users in non-orthogonal multiple access. IEEE Signal Processing Letters, 23(12), 1766–1770. https://doi.org/10.1109/lsp.2016.2619371.

    Article  Google Scholar 

  16. He, J., & Tang, Z. (2017). Low-complexity user pairing and power allocation algorithm for 5G cellular network non-orthogonal multiple access. Electronics Letters, 53(9), 626–627. https://doi.org/10.1049/el.2016.4190.

    Article  Google Scholar 

  17. Zhu, L., Zhang, J., Xiao, J. Z., Cao, X., & Wu, D. O. (2019). Optimal user pairing for downlink non-orthogonal multiple access (NOMA). IEEE Wireless Communications Letters, 8(2), 328–331. https://doi.org/10.1109/lwc.2018.2853741.

    Article  Google Scholar 

  18. Roth, A., & Sotomayor, M. (1992). Two-sided matching: A study in game-theoretic modeling and analysis. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  19. Di, B., Bayat, S., Song, L., & Li, Y. (2015). Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory. In IEEE global communications conference (GLOBECOM), San Diego (pp. 1–6). https://doi.org/10.1109/glocom.2015.7417643.

  20. Liang, W., Ding, Z., Li, Y., & Song, L. (2017). User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Transactions on Communications, 65(12), 5319–5332. https://doi.org/10.1109/tcomm.2017.2744640.

    Article  Google Scholar 

  21. Nathira, S., Pushpalatha, V., & Bhagyaveni, M. A. (2018). Subcarrier allocation for sum rate maximization in 5G NOMA system using matching theory. International Journal of Electronics, Electrical and Computational System IJEECS, 7(5), 49–55.

    Google Scholar 

  22. Wang, X., & Zhu, Q. (2018). Matching game based resource allocation algorithm for energy-harvesting small cells network with NOMA. KSII Transactions on Internet and Information Systems, 12(11), 5203–5217. https://doi.org/10.3837/tiis.2018.11.002.

    Article  Google Scholar 

  23. Muhammed, A. J., Diamantoulakis, Z., Li, L., & Karagiannidis, G. K. (2019). Energy-efficient resource allocation in multicarrier NOMA systems with fairness. IEEE Transactions on Communications, 67(12), 8639–8654. https://doi.org/10.1109/tcomm.2019.2938963.

    Article  Google Scholar 

  24. Fang, F., Zhang, H., Cheng, J., & Leung, V. C. M. (2016). Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Transactions on Communications, 64(9), 3722–3732. https://doi.org/10.1109/tcomm.2016.2594759.

    Article  Google Scholar 

  25. Hojeij, M., Farah, J., Nour, C. A., et al. (2016). New optimal and suboptimal resource allocation techniques for downlink non-orthogonal multiple access. Wireless Personal Communication, 87, 837–867. https://doi.org/10.1007/s11277-015-2629-2.

    Article  Google Scholar 

  26. Wang, J., Jiang, C., Zhang, H., Ren, Y., Chen, K., & Hanzo, L. (2020). Thirty years of machine learning: The road to pareto-optimal wireless networks. I22EEE Communications Surveys & Tutorials, 22(3), 1472–1514. https://doi.org/10.1109/comst.2020.2965856.

    Article  Google Scholar 

  27. Hassani, H., Ghodsi, M., & Howell, G. (2010). A note on standard deviation and standard error. Teaching Mathematics and Its Applications, 29(2), 108–112. https://doi.org/10.1093/teamat/hrq003.

    Article  Google Scholar 

  28. Benjebbovu, A., Li, A., Saito, Y., Kishiyama, Y., Harada, A. & Nakamura, T. (2013). System-level performance of downlink NOMA for future LTE enhancements. In IEEE globecom workshops (GC Wkshps), Atlanta (pp. 66–70). https://doi.org/10.1109/glocomw.2013.6824963.

  29. Jain, R., Chiu, D. M., & Hawe, W. R. (1998). A Quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Hudson, MA: Eastern Research Laboratory, Digital Equipment Corporation.

    Google Scholar 

  30. Elsherief, M., Elwekeil, M., & Abd-Elnaby, M. (2019). Resource and power allocation for achieving rate fairness in D2D communications overlaying cellular networks. Wireless Network, 25, 4049–4058. https://doi.org/10.1007/s11276-018-01935-y.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support received from Taif University Researchers Supporting Project Number (TURSP-2020/147), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germien G. Sedhom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elnaby, M., Sedhom, G.G., Messiha, N.W. et al. Efficient user pairing algorithm for enhancement of spectral efficiency and interference cancelation in downlink NOMA system. Wireless Netw 27, 1035–1047 (2021). https://doi.org/10.1007/s11276-020-02495-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02495-w

Keywords

Navigation