[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

QoS aware and fault tolerant handovers in software defined LTE networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In order to handle a huge number of mobile users connections and their requirements like higher throughput, lower delay and seamless mobility, telecom operators have started deploying 4G and 5G technologies. One of the major requirements of 4G and 5G is seamless mobility in high speed mobile networks. Especially in high speed mobile networks sudden groups of handovers can raise sudden handover failures, high traffic load and Quality of Service (QoS) dissatisfaction to users in the network. In this work, these issues are addressed using centralized software defined mobile networks. In particular, to handle sudden traffic load and handover failures due to sudden groups of handovers, we propose an integrated QoS aware prioritized handovers and load balance approach called QoS Aware Fault Tolerant Handovers (QAFT). Unlike existing works, in this work, we are proposing prioritized handovers for Guaranteed Bit Rate (GBR) User Equipments (UEs) over Non-GBR (N-GBR) UEs. Main objectives of our approach are minimizing the effect of N-GBR UEs on GBR UEs during sudden handovers in the network, prevent failures of handovers and distribution of sudden traffic load uniformly across available neighbor cells. In our test scenarios evaluations, it is found that on average prioritized handovers provide 44% higher throughput and 42% reduction in delay to QoS UEs compared to non-prioritized handovers approach. Besides the integration of load balance approach and prioritized handovers in QAFT, it is able to maintain around 80% GBR satisfaction to all network UEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Qazi, Z. A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., & Yu, M. (2013). SIMPLE-fying middlebox policy enforcement using SDN. ACM SIGCOMM Computer Communication Review, 43(4), 27–38.

    Google Scholar 

  2. Li, L. E., Mao, Z. M., & Rexford, J. (2012). Toward software-defined cellular networks. In European workshop on software defined networking (EWSDN) (pp. 7–12). IEEE.

  3. Jin, X., Li, L. E., Vanbever, L., & Rexford, J. (2013) Softcell: Scalable and flexible cellular core network architecture. In Proceedings of the ninth ACM conference on emerging networking experiments and technologies (pp. 163–174). ACM.

  4. Chen, T., Zhang, H., Chen, X., & Tirkkonen, O. (2014). SoftMobile: Control evolution for future heterogeneous mobile networks. IEEE Transactions on Wireless Communications, 21(6), 70–78.

    Google Scholar 

  5. Floodlight OpenFlow Controller. http://www.projectfloodlight.org.

  6. NoX OpenFlow Controller. http://www.noxrepo.org/pox/about-pox/.

  7. Ryu OpenFlow Controller. http://osrg.github.io/ryu/.

  8. PoX OpenFlow Controller. http://www.noxrepo.org/.

  9. Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.

    Google Scholar 

  10. Lara, A., Kolasani, A., & Ramamurthy, B. (2014). Network innovation using openflow: A survey. IEEE Communications Surveys and Tutorials, 16(1), 493–512.

    Google Scholar 

  11. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.

    Google Scholar 

  12. OpenFlow. https://www.opennetworking.org/sdn-resources/onf-specifications/openflow.

  13. Nunes, B., Mendonca, M., Nguyen, X.-N., Obraczka, K., Turletti, T., et al. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys and Tutorials, 16(3), 1617–1634.

    Google Scholar 

  14. Rangisetti, A. K., Tamma, B. R., et al. (2016). QoS aware load balance in software defined LTE networks. Computer Communications, 97C, 52–71.

    Google Scholar 

  15. Kumar, R. A., & Reddy, T. B. (2019). Interference and QoS aware cell switch-off strategy for software defined LTE HetNets. Journal of Network and Computer Applications, 125, 115–129.

    Google Scholar 

  16. Pan, M.-S., Lin, T.-M., & Chen, W.-T. (2015). An enhanced handover scheme for mobile relays in LTE-A high-speed rail networks. IEEE Transactions on Vehicular Technology, 64(2), 743–756.

    Google Scholar 

  17. Ruiz-Avilés, J., Toril, M., Luna-Ramirez, S., Buenestado, V., & Regueira, M. (2015). Analysis of limitations of mobility load balancing in a live LTE system. IEEE Wireless Communications Letters, 4(4), 417–420.

    Google Scholar 

  18. Lee, C.-W., Chuang, M.-C., Chen, M. C., & Sun, Y. S. (2014). Seamless handover for high-speed trains using femtocell-based multiple egress network interfaces. IEEE Transactions on Wireless Communications, 13(12), 6619–6628.

    Google Scholar 

  19. Maharaj, B. T., Wallace, J. W., Jensen, M. A., & Linde, L. P. (2008). A low-cost open-hardware wideband multiple-input–multiple-output (MIMO) wireless channel sounder. IEEE Transactions on Instrumentation and Measurement, 57(10), 2283–2289.

    Google Scholar 

  20. Molina-Garcia-Pardo, J.-M., Rodriguez, J.-V., & Juan-Llacer, L. (2008). MIMO channel sounder based on two network analyzers. IEEE Transactions on Instrumentation and Measurement, 57(9), 2052–2058.

    Google Scholar 

  21. Salous, S., Filippidis, P., Lewenz, R., Hawkins, I., Razavi-Ghods, N., & Abdallah, M. (2005). Parallel receiver channel sounder for spatial and MIMO characterisation of the mobile radio channel. IEE Proceedings-Communications, 152(6), 912–918.

    Google Scholar 

  22. Kivinen, J., Korhonen, T. O., Aikio, P., Gruber, R., Vainikainen, P., & Haggman, S.-G. (1999). Wideband radio channel measurement system at 2 GHz. IEEE Transactions on Instrumentation and Measurement, 48(1), 39–44.

    Google Scholar 

  23. Howard, S. J., & Pahlavan, K. (1990). Measurement and analysis of the indoor radio channel in the frequency domain. IEEE Transactions on Instrumentation and Measurement, 39(5), 751–755.

    Google Scholar 

  24. Khan, F. H., & Portmann, M. (2019). Joint QOS-control and handover optimization in backhaul aware SDN-based LTE networks. Wireless Networks, 26, 1–23.

    Google Scholar 

  25. Sadik, M., Akkari, N., & Aldabbagh, G. (2018). QoS/QoE based handover decision in multi-tier lte networks. International Journal of Digital Information and Wireless Communications (IJDIWC), 8(2), 133–138.

    Google Scholar 

  26. Saxena, A., & Sindal, R. (2018). Performance evaluation of EUTRAN LTE handover for high-speed vehicle. Wireless Personal Communications, 98(3), 2837–2848.

    Google Scholar 

  27. Gódor, G., Jakó, Z., Knapp, Á., & Imre, S. (2015). A survey of handover management in LTE-based multi-tier femtocell networks: Requirements, challenges and solutions. Computer Networks, 76, 17–41.

    Google Scholar 

  28. Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2013). Mobility management for femtocells in LTE-advanced: Key aspects and survey of handover decision algorithms. IEEE Communications Surveys and Tutorials, 16(1), 64–91.

    Google Scholar 

  29. Rangisetti, A. K., & Tamma, B. R. (2017). Software defined wireless networks: A survey of issues and solutions. Wireless Personal Communications, 97, 6019–6053.

    Google Scholar 

  30. Zhou, S., Zhao, T., Niu, Z., & Zhou, S. (2016). Software-defined hyper-cellular architecture for green and elastic wireless access. IEEE Communications Magazine, 54(1), 12–19.

    Google Scholar 

  31. Sun, S., Gong, L., Rong, B., & Lu, K. (2015). An intelligent SDN framework for 5G heterogeneous networks. IEEE Communications Magazine, 53(11), 142–147.

    Google Scholar 

  32. Tan, W., Zhang, J., Peng, C., Xia, B., & Kou, Y. (2014). SDN-enabled converged networks. IEEE Wireless Communications, 21(6), 79–85.

    Google Scholar 

  33. Costa-Requena, J., Santos, J. L., Guasch, V. F., Ahokas, K., Premsankar, G., Luukkainen, S., Ahmad, I., Liyanage, M., Ylianttila, M., & Pérez, O. L., et al. (2015). SDN and NFV integration in generalized mobile network architecture. In Proceedings of European conference on networks and communications (EuCNC) (pp. 154–158). IEEE.

  34. Nagaraj, K., & Katti, S. (2014). ProCel: Smart traffic handling for a scalable software EPC. In Proceedings of the third workshop on Hot topics in software defined networking (pp. 43–48). ACM.

  35. Said, S. B. H., Sama, M. R., Guillouard, K., Suciu, L., Simon, G., Lagrange, X., & Bonnin, J.-M. (2013). New control plane in 3GPP LTE/EPC architecture for on-demand connectivity service. In 2013 IEEE 2nd international conference on cloud networking (CloudNet) (pp. 205–209). IEEE.

  36. Moradi, M., Wu, W., Li, L. E., & Mao, Z. M. (2014). SoftMoW: Recursive and reconfigurable cellular WAN architecture. In Proceedings of the 10th ACM international on conference on emerging networking experiments and technologies (pp. 377–390). ACM.

  37. Cho, J., Nguyen, B., Banerjee, A., Ricci, R., Van der Merwe, J., & Webb, K. (2014). SMORE: Software-defined networking mobile offloading architecture. In Proceedings of the 4th workshop on all things cellular: Operations, applications, and challenges (pp. 21–26). ACM.

  38. Pentikousis, K., Wang, Y., & Hu, W. (2013). Mobileflow: Toward software-defined mobile networks. IEEE Communications Magazine, 51(7), 44–53.

    Google Scholar 

  39. Gudipati, A., Perry, D., Li, L. E., & Katti, S. (2013). SoftRAN: Software defined radio access network. In Proceedings of the second ACM SIGCOMM workshop on hot topics in software defined networking (pp. 25–30). ACM.

  40. Katti, S., & Li, L. E. (2014). Radiovisor: A slicing plane for radio access networks. Presented as part of the open networking summit 2014 (ONS 2014).

  41. Yap, K.-K., Kobayashi, M., Sherwood, R., Huang, T.-Y., Chan, M., Handigol, N., et al. (2010). OpenRoads: Empowering research in mobile networks. ACM SIGCOMM Computer Communication Review, 40(1), 125–126.

    Google Scholar 

  42. Wang, H., Ding, L., Wu, P., Pan, Z., Liu, N., & You, X. (2011). Qos-aware load balancing in 3GPP long term evolution multi-cell networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–5). IEEE.

  43. Li, M., Zhao, L., Li, X., Li, X., Zaki, Y., Timm-Giel, A., et al. (2012). Investigation of network virtualization and load balancing techniques in LTE networks. In Vehicular technology conference (VTC) (pp. 1–5). IEEE.

  44. Szilágyi, P., Vincze, Z., & Vulkan, C. (2012). Enhanced mobility load balancing optimisation in LTE. In IEEE 23rd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 997–1003). IEEE.

  45. Zhou, T., Tao, C., Salous, S., Liu, L., & Tan, Z. (2016). Implementation of an LTE-based channel measurement method for high-speed railway scenarios. IEEE Transactions on Instrumentation and Measurement, 65(1), 25–36.

    Google Scholar 

  46. Zhang, Y., Wu, M., Zhang, R., Zhou, P., & Di, S. (2013). Adaptive QoS-aware resource allocation for high-speed mobile LTE wireless systems. In Globecom workshops (GC Wkshps) (pp. 947–952). IEEE.

  47. Zhang, H., Liu, N., Long, K., Cheng, J., Leung, V. C., & Hanzo, L. (2018). Energy efficient subchannel and power allocation for the software defined heterogeneous VLC and RF networks. IEEE Journal on Selected Areas in Communications, 36, 658–670.

    Google Scholar 

  48. Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.

    Google Scholar 

  49. Huang, Z., Liu, J., Shen, Q., Wu, J., & Gan, X. (2015). A threshold-based multi-traffic load balance mechanism in LTE-A networks. In Wireless communications and networking conference (WCNC) (pp. 1273–1278). IEEE.

  50. Abdelhamid, A., Krishnamurthy, P., & Tipper, D. (2015). Resource allocation for heterogeneous traffic in LTE virtual networks. In 2015 16th IEEE international conference on mobile data management (MDM) (Vol. 1, pp. 173–178). IEEE.

  51. Nathaniel, S., Ariffin, S. H. S., Farzamnia, A., & Adegboyega, A. J. (2014). Multi-criteria load balancing decision algorithm for LTE network. In 2014 4th international conference on engineering technology and technopreneuship (ICE2T) (pp. 57–62). IEEE.

  52. Li, Q., Gu, X., Lu, L., Zhang, L., Li, W., & Zhang, X. (2014). Green heterogeneous network with load balancing in LTE-A systems. In Personal, indoor, and mobile radio communication (PIMRC) (pp. 1991–1995). IEEE.

  53. Rangisetti, A. K., Baldaniya, H. B., Tamma, B. R., et al. (2014). Load-aware hand-offs in software defined wireless LANs. In 2014 IEEE 10th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 685–690). IEEE.

  54. Alaca, F., Sediq, A. B., & Yanikomeroglu, H. (2012). A genetic algorithm based cell switch-off scheme for energy saving in dense cell deployments. In Proceedings of IEEE Globecom workshops (pp. 63–68). IEEE.

  55. Rao, J. B., & Fapojuwo, A. O. (2014). A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Communications Surveys and Tutorials, 16(1), 154–180.

    Google Scholar 

  56. Soh, Y. S., Quek, T. Q., Kountouris, M., & Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.

    Google Scholar 

  57. Oh, E., Krishnamachari, B., Liu, X., & Niu, Z. (2011). Toward dynamic energy-efficient operation of cellular network infrastructure. IEEE Communications Magazine, 49(6), 56–61.

    Google Scholar 

  58. Bousia, A., Kartsakli, E., Alonso, L., & Verikoukis, C. (2012). Dynamic energy efficient distance-aware base station switch on/off scheme for LTE-advanced. In Proceedings of global communications conference (GLOBECOM) (pp. 1532–1537). IEEE.

  59. Bousia, A., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2012). “Green” distance-aware base station sleeping algorithm in LTE-advanced. In Proceedings of international conference on communications (ICC) (pp. 1347–1351). IEEE.

  60. Liu, H., Cui, H., & Chen, J. (2014). Dynamic sleeping algorithm of base station based on spatial features. In Proceedings of international conference on telecommunications (ICT) (pp. 333–337). IEEE.

  61. Morabit, Y. El, Mrabti, F., & Abarkan, E. H. (2017). Small cell switch off using genetic algorithm. In 2017 international conference on advanced technologies for signal and image processing (ATSIP) (pp. 1–4). IEEE.

  62. Le-The, Q.-N., Beitelmal, T., Lagum, F., Szyszkowicz, S. S., & Yanikomeroglu, H. (2017). Cell switch-off algorithms for spatially irregular base station deployments. IEEE Wireless Communications Letters, 6(3), 354–357.

    Google Scholar 

  63. Dolfi, M., Cavdar, C., Morosi, S., Piunti, P., Zander, J., & Del, R. E. (2017). On the trade-off between energy saving and number of switchings in green cellular networks. Transactions on Emerging Telecommunications Technologies, 28(11), e3193.

    Google Scholar 

  64. Soliman, S. S., & Song, B. (2017). Fifth generation (5G) cellular and the network for tomorrow: Cognitive and cooperative approach for energy savings. Journal of Network and Computer Applications, 85, 84–93.

    Google Scholar 

  65. Zhang, S., Zhao, S., Yuan, M., Zeng, J., Yao, J., Lyu, M. R., & King, I. (2017). Traffic prediction based power saving in cellular networks: A machine learning method. In Proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic information systems (pp. 29–35). ACM.

  66. Nabuuma, H., Alsusa, E., & Pramudito, W. (2015). A load-aware base station switch-off technique for enhanced energy efficiency and relatively identical outage probability. In Proceedings of vehicular technology conference (VTC) (pp. 1–5). IEEE.

  67. Oikonomakou, M., Antonopoulos, A., Alonso, L., & Verikoukis, C. (2015). Cooperative base station switching off in multi-operator shared heterogeneous network. In Proceedings of global communications conference (GLOBECOM) (pp. 1–6). IEEE.

  68. Dudnikova, A., Dini, P., Giupponi, L., & Panno, D. (2015). Multi-criteria decision for small cell switch off in ultra-dense LTE networks. In Proceedings of international conference on telecommunications (ConTEL) (pp. 1–8). IEEE.

  69. Monghal, G., Pedersen, K. I., Kovacs, I. Z., & Mogensen, P. E. (2008). QoS oriented time and frequency domain packet schedulers for the UTRAN long term evolution. In Proceedings of vehicular technology conference (VTC) (pp. 2532–2536). IEEE.

  70. X2AP protocol 3GPP specification. http://www.etsi.org/deliver/etsi_ts/136400_136499/136423/13.03.00_60/.

  71. NS-3.19. http://www.nsnam.org/news/ns-3-19-released/.

  72. NS-3 and OpenFlow. http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html.

  73. Lee, S.-B., Pefkianakis, I., Meyerson, A., Xu, S., & Lu, S. (2009). Proportional fair frequency-domain packet scheduling for 3GPP LTE uplink. In IEEE INFOCOM (pp. 2611–2615). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Rangisetti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangisetti, A.K., Sathya, V. QoS aware and fault tolerant handovers in software defined LTE networks. Wireless Netw 26, 4249–4267 (2020). https://doi.org/10.1007/s11276-020-02323-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02323-1

Keywords

Navigation