[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Moth flame optimization algorithm based on decomposition for placement of relay nodes in WSNs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Metaheuristic algorithms have popularly been used to solve a wide range of complex engineering optimization problems. In order to solve the problems with two or more objectives multi-objective algorithms (MOAs) are used. Application of MOAs to solve multiple conflicting objectives yields a Pareto-optimal solution set. In this paper, we propose a multi-objective decomposition-based moth flame optimization (MOMFO/D) algorithm, that decomposes the objectives into multiple single objectives which are optimized simultaneously. The algorithm is used to solve the relay node placement problem, that is modeled as a bi-objective problem with the goal of minimization of average intra-cluster distance and average hop-count to improve the network lifetime. The Pareto-optimal fronts obtained through the simulations are evaluated using three distinct quality indicators namely the Inverted Generational Distance, Spacing Metric and Maximum Spread in order to evaluate the performance. The obtained results considered over a number of runs are compared with other existing optimizers in the literature such as multi-objective non-dominated sorted moth flame optimizer, and multi-objective evolutionary algorithm based on decomposition. The results demonstrate the superiority in the performance of the proposed algorithm over others. The statistical analysis of the experimental work has been carried out by conducting Friedman’s and Quade test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hussain, K., Salleh, M. N. M., Cheng, S., & Shi, Y. (2018). Metaheuristic research: A comprehensive survey. Artificial Intelligence Review, 52, 2191–2233.

    Article  Google Scholar 

  2. Das, S., Maity, S., Qu, B.-Y., & Suganthan, P. N. (2011). Real-parameter evolutionary multimodal optimization—A survey of the state-of-the-art. Swarm and Evolutionary Computation, 1(2), 71–88.

    Article  Google Scholar 

  3. Tejani, G. G., Savsani, V. J., Patel, V. K., & Savsani, P. V. (2018). Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics. Journal of Computational Design and Engineering, 5(2), 198–214.

    Article  Google Scholar 

  4. Li, W., Özcan, E., & John, R. (2017). Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation. Renewable Energy, 105, 473–482.

    Article  Google Scholar 

  5. Abidi, B., Jilbab, A., & Haziti, M. E. (2017). Wireless sensor networks in biomedical: Wireless body area networks. In Europe and MENA cooperation advances in information and communication technologies (pp. 321–329). Springer.

  6. Liu, Y. M., Liu, Y. M., Xu, H. L., & Teo, K. L. (2018). Forest fire monitoring, detection and decision making systems by wireless sensor network. In 2018 Chinese Control And Decision Conference (CCDC). IEEE.

  7. Sun, Z., Yimin, X., Liang, G., & Zhou, Z. (2018). An intrusion detection model for wireless sensor networks with an improved v-detector algorithm. IEEE Sensors Journal, 18(5), 1971–1984.

    Article  Google Scholar 

  8. Lloyd, E. L., & Xue, G. (2007). Relay node placement in wireless sensor networks. IEEE Transactions on Computers, 56(1), 134–138.

    Article  MathSciNet  Google Scholar 

  9. Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6), 712–731.

    Article  Google Scholar 

  10. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249.

    Article  Google Scholar 

  11. Amine Bouhlel, M., Bartoli, N., Regis, R. G., Otsmane, A., & Morlier, J. (2018). Efficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares method. Engineering Optimization, 50, 2038–20053.

    Article  MathSciNet  Google Scholar 

  12. Sapre, S., & Mini, S. (2018). Optimized relay nodes positioning to achieve full connectivity in wireless sensor networks. Wireless Personal Communications, 99(4), 1521–1540.

    Article  Google Scholar 

  13. Chen, C.-P., Mukhopadhyay, S. C., Chuang, C.-L., Liu, M.-Y., & Jiang, J.-A. (2015). Efficient coverage and connectivity preservation with load balance for wireless sensor networks. IEEE Sensors Journal, 15(1), 48–62.

    Article  Google Scholar 

  14. Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for dynamic optimization: Algorithms and applications. Swarm and Evolutionary Computation, 33, 1–17.

    Article  Google Scholar 

  15. Sapre, S., & Mini, S. (2019). Opposition-based moth flame optimization with cauchy mutation and evolutionary boundary constraint handling for global optimization. Soft Computing, 23(15), 6023–6041.

    Article  Google Scholar 

  16. Mohajerani, A., & Gharavian, D. (2016). An ant colony optimization based routing algorithm for extending network lifetime in wireless sensor networks. Wireless Networks, 22(8), 2637–2647.

    Article  Google Scholar 

  17. Hashim, H. A., Ayinde, B. O., & Abido, M. A. (2016). Optimal placement of relay nodes in wireless sensor network using artificial bee colony algorithm. Journal of Network and Computer Applications, 64, 239–248.

    Article  Google Scholar 

  18. Ma, C., Liang, W., & Zheng, M. (2018). Delay constrained relay node placement in wireless sensor networks: A subtree-and-mergence-based approach. Mobile Networks and Applications, 23(5), 1220–1232.

    Article  Google Scholar 

  19. Ye, W., Luo, J., Wu, W., & Xu, S. (2019). Energy-efficient relay node placement in wireless heterogeneous networks with capacity constraints. IEEE Access, 1–1.

  20. Vijayalakshmi, K., & Anandan, P. (2019). A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN. Cluster Computing, 22, 12275–12282.

    Article  Google Scholar 

  21. Sun, Y., Dong, W., & Chen, Y. (2017). An improved routing algorithm based on ant colony optimization in wireless sensor networks. IEEE Communications Letters, 21(6), 1317–1320.

    Article  Google Scholar 

  22. Magán-Carrión, R., Camacho, J., García-Teodoro, P., Flushing, E. F., & Di Caro, G. A. (2016). DRNS: Dynamical relay node placement solution. In Advances in practical applications of scalable multi-agent Systems (PAAMS) (pp. 273–276). Springer.

  23. Peiravi, A., Mashhadi, H. R., & Javadi, S. H. (2013). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114–126.

    Article  Google Scholar 

  24. Perez, A. J., Labrador, M. A., & Wightman, P. M. (2011). A multiobjective approach to the relay placement problem in WSNS. In 2011 IEEE wireless communications and networking conference (pp. 475–480).

  25. Lanza-Gutierrez, J. M., & Gomez-Pulido, J. A. (2015). Assuming multiobjective metaheuristics to solve a three-objective optimisation problem for relay node deployment in wireless sensor networks. Applied Soft Computing, 30, 675–687.

    Article  Google Scholar 

  26. Lanza-Gutierrez, J. M., & Gomez-Pulido, J. A. (2017). A gravitational search algorithm for solving the relay node placement problem in wireless sensor networks. International Journal of Communication Systems, 30(2), e2957.

    Article  Google Scholar 

  27. Coello Coello, C. A. (1999). A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems, 1(3), 269–308.

    Article  Google Scholar 

  28. Elsakaan, A. A., El-Sehiemy, R. A., Kaddah, S. S., & Elsaid, M. I. (2018). An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions. Energy, 157, 1063–1078.

    Article  Google Scholar 

  29. Li, W. K., Wang, W. L., & Li, L. (2018). Optimization of water resources utilization by multi-objective moth-flame algorithm. Water Resources Management, 32, 3303–3316.

    Article  Google Scholar 

  30. Allam, D., Yousri, D. A., & Eteiba, M. B. (2016). Parameters extraction of the three diode model for the multi-crystalline solar cell/module using moth-flame optimization algorithm. Energy Conversion and Management, 123, 535–548.

    Article  Google Scholar 

  31. Martínez, S. Z., & Coello, C. A C. (2012). A direct local search mechanism for decomposition-based multi-objective evolutionary algorithms. In 2012 IEEE Congress on evolutionary computation (CEC) (pp. 1–8). IEEE.

  32. Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601.

    Article  Google Scholar 

  33. Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284–302.

    Article  Google Scholar 

  34. Ke, L., Zhang, Q., & Battiti, R. (2013). MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Transactions on Cybernetics, 43(6), 1845–1859.

    Article  Google Scholar 

  35. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., & Tiwari, S. (2008). Multiobjective optimization test instances for the CEC 2009, special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264.

  36. Savsani, V., & Tawhid, M. A. (2017). Non-dominated sorting moth flame optimization (NSMFO) for multi-objective problems. Engineering Applications of Artificial Intelligence, 63, 20–32.

    Article  Google Scholar 

  37. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  38. Yang, X.-S., Karamanoglu, M., & He, X. (2014). Flower pollination algorithm: A novel approach for multiobjective optimization. Engineering Optimization, 46(9), 1222–1237.

    Article  MathSciNet  Google Scholar 

  39. Bai, J., & Liu, H. (2016). Multi-objective artificial bee algorithm based on decomposition by PBI method. Applied Intelligence, 45(4), 976–991.

    Article  Google Scholar 

  40. Coello, C. A. C., & Cortés, N. C. (2005). Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines, 6(2), 163–190.

    Article  Google Scholar 

  41. Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization. Technical report, Air Force Institute of Technology Wright-Patterson Air Force Base Ohio.

  42. Jiang, S., & Yang, S. (2017). A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 21(1), 65–82.

    Article  Google Scholar 

  43. Mittal, N., Singh, U., & Sohi, B. S. (2019). An energy-aware cluster-based stable protocol for wireless sensor networks. Neural Computing and Applications, 31(11), 7269–7286.

    Article  Google Scholar 

  44. Yildiz, H. U., Temiz, M., & Tavli, B. (2015). Impact of limiting hop count on the lifetime of wireless sensor networks. IEEE Communications Letters, 19(4), 569–572.

    Article  Google Scholar 

  45. Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11–12), 1245–1287.

    Article  MathSciNet  Google Scholar 

  46. Kramer, O., & Schwefel, H.-P. (2006). On three new approaches to handle constraints within evolution strategies. Natural Computing, 5(4), 363–385.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saunhita Sapre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapre, S., Mini, S. Moth flame optimization algorithm based on decomposition for placement of relay nodes in WSNs. Wireless Netw 26, 1473–1492 (2020). https://doi.org/10.1007/s11276-019-02213-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02213-1

Keywords

Navigation