[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Determining optimum carob powder adsorbtion for cleaning wastewater: intelligent optimization with electro-search algorithm

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this study, effective and fast removal efficiency of carob powder (as an absorbent material from liquid phase) was investigated by focusing on the dangerous paint methylene blue mixture. The surface texture developed adsorbent was revealed to be porous by characterizing done thanks to scanning through electron microscope. Experiment parameters of pH, ultrasonic frequency, particle size, contact time, temperature and initial concentration of dissolved methylene blue dye were investigated accordingly. Thereafter, Box–Behnken design experiment was applied for adsorption experiments. Regression analysis findings demonstrated that the experimental data is good for to the non-linear model with correlation coefficients of correction value at 0.8899 and 0.9830. The maximum adsorption value was determined as around 256.44 mg/g thanks to the Electro-Search Algorithm, a recent Artificial Intelligence based intelligent optimization technique. Additionally, some alternative intelligent optimization algorithms were also used for determining optimum values. According to the results of the study, the carob bean can be used as an alternative adsorbent and the found optimum values can be employed for that purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chiou, M. S., & Li, H. Y. (2003). Adsorption behaviour of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 50, 1095–1105.

    Google Scholar 

  2. Pearce, C. I., Lloyd, J. R., & Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes and Pigments, 58(3), 179–196.

    Google Scholar 

  3. Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1–2), 1–53.

    Google Scholar 

  4. Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Science of the Total Environment, 429, 123–155.

    Google Scholar 

  5. Gehr, R. L. (2018). Theory and practice of water and wastewater treatment. Hoboken: Wiley-Blackwell.

    MATH  Google Scholar 

  6. Aksu, Z., & Tezer, S. (2001). Equilibrium and kinetic modelling of biosorption of remazol black B by Rhizopus arrhizus in a batch system: Effect of temperature. Process Biochemistry, 36, 431–439.

    Google Scholar 

  7. Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194, 259–267.

    Google Scholar 

  8. Crini, G. (2006). Non-conventional low-cost adsorbenrs fot dye removal: A review. Bioresource Technology, 97, 1061–1085.

    Google Scholar 

  9. Ravi Kumar, M. N. V., Sridhari, T. R., Bhavani, K. D., & Dutta, P. K. (1998). Trends in color removal from textile mill effluents. Colorage, 40, 25–34.

    Google Scholar 

  10. Sun, Q., & Yang, L. (2003). The adsorption of basic dyes from aquous solution on modified peat-resin particle. Water Research, 37, 1535–1544.

    Google Scholar 

  11. McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., & Nigam, P. (2001). Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechonology, 56, 81–87.

    Google Scholar 

  12. Toh, Y. C., Yen, J. J. L., Jefftey, P., & Ting, Y. P. (2003). Decolourisation of azo dyes by white- rot fungi (WRF) isolated in Singapore. Enzyme and Microbial Technology, 35, 569–575.

    Google Scholar 

  13. Lorenc-Grabowska, E., & Gryglewicz, G. (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigments., 74, 34–40.

    Google Scholar 

  14. Malik, P. K., & Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31, 241–250.

    Google Scholar 

  15. Mittal, A. (2006). Adsorption kinetics of removal of a toxic dyei Malachite Green, from wastewater by using hen feathers. Journal of Hazardous Materials, 33, 196–202.

    Google Scholar 

  16. El-Geundi, M. S. (1991). Colour removal from textile effluents by adsorption techniques. Water Research, 25, 271–273.

    Google Scholar 

  17. Nassar, M. M., & El-Geundi, M. S. (1991). Comparative cost of colour removal from textile effluents using natural adsorbents. Journal of Chemical Technology and Biotechnology, 50, 257–264.

    Google Scholar 

  18. McKay, G., El-Geundi, M., & Nassar, M. M. (1998). External mass transport processes during the adsorption of dyes onto bagasse pith. Water Research, 22, 1527–1533.

    Google Scholar 

  19. Sun, G., & Xu, X. (1997). Sunflower stalks as adsorbents for color removal from textile wastewater. Industrial and Engineering Chemistry Research, 36, 808–812.

    Google Scholar 

  20. Gupta, V. K., Mohan, D., Sharma, S., & Sharma, M. (2000). Removal of basic dye (Rhodamine B and Methylene blue) from aqueous solutions using bagasse fly ash. Separation Science and Technology, 35, 2097–2113.

    Google Scholar 

  21. El-Nabarwy, T. H., & Khedr, S. A. (2000). Removal of pollutants from water using untreated and treated sawdust and water hyacinth. Adsorption Science and Technology, 18, 385–398.

    Google Scholar 

  22. Zhao, X. K., Yang, G. P., & Gao, X. C. (2003). Studies on the sorption behaviors of nitrobenzene on marine sediments. Chemosphere, 52, 917–925.

    Google Scholar 

  23. Basibuyuk, M., & Forster, C. F. (2003). An examination of the adsorption characteristics of a basic dye (Maxilon Red BL-N) on to live activated sludge system. Process Biochemistry, 38, 1311–1316.

    Google Scholar 

  24. Annadurai, G., Juang, R. S., Yen, P. S., & Lee, D. J. (2003). Use of thermally treated waste biological sludge as dye absorbent. Advances in Environmental Research, 7(3), 739–744.

    Google Scholar 

  25. Weng, C. H., Chang, E. E., & Chiang, P. C. (2001). Characteristics of new coccine dye adsorption onto digested sludge particulates. Water Science and Technology, 44, 279–284.

    Google Scholar 

  26. Namasivayam, C., & Arasi, D. J. S. E. (1997). Removal of Congo red from wastewater by adsorption onto red mud. Chemosphere, 34, 401–471.

    Google Scholar 

  27. Namasivayam, C., Dinesh, K. M., Selvi, K., Begum, A. R., Vanathi, T., & Yamuna, R. T. (2001). Waste coir pith a potential biomass for the treatment of dyeing wastewaters. Biomass and Bioenergy, 21, 477–483.

    Google Scholar 

  28. Bhattacharyya, K. G., & Sarma, A. (2003). Adsorption characteristics of the dye, Brilliant green, on Neem leaf powder. Dyes Pigments, 57, 211–222.

    Google Scholar 

  29. Namasivayam, C., Muniasamy, N., Gayathri, K., Rani, M., & Ranganathan, K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57, 37–43.

    Google Scholar 

  30. Ho, Y. S., Chiang, T. H., & Hsueh, Y. M. (2005). Removal of basic dye from aqueous solutions using tree fern as a biosorbent. Process Biochemistry, 40, 119–124.

    Google Scholar 

  31. Bhattacharyya, K. G., & Sharma, A. (2005). Kinetics and thermodynamics of methylene blue adsorption on Neem leaf powder. Dyes and Pigments, 65, 51–59.

    Google Scholar 

  32. Ferrero, F. (2007). Dye removal by low cost adsorbents: Hazelnut shells incomparison with woods a dust. Journal of Hazardous Materials, 142, 144–152.

    Google Scholar 

  33. Tunalıoğlu, R., & Ozkaya, M. T. (2003). Carob (In Turkish, Keçiboynuzu). T.E.A.E Bakış, 3, 1–4.

    Google Scholar 

  34. Battle, I., & Tous, J. 1997. Carob tree, Ceratonia siliqua L., Promoting the Conservation and Use of Underutilized and Neglected Crops Institute of Plant Genetics and Crop Plant Research/International Plant Genetic Resources Institute. Gatersleben/Rome, Italy. 17, 78.

  35. Makris, D. P., & Kefalas, P. (2004). Carob Pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technology Biotechnology, 42, 105–108.

    Google Scholar 

  36. Avallone, R., Cosenza, F., Farina, F., Baraldi, C., & Baraldi, M. (2002). Extraction and purification from Ceratonia siliqua of compounds acting on central and peripheral benzodiazepine receptors. Fitoterapia, 73, 390–396.

    Google Scholar 

  37. Evans, M. (2003). Optimization of manufacturing processes: A response surface approach. London: Carlton house Terrace.

    Google Scholar 

  38. Masoumi, A. A., & Tabil, L. 2003. Physical properties of chickpea (C. arientinum) cultivers Paper No. 036058 for 2003 ASAE Annual Meeting, Las Vagas, NV, USA

  39. Weng, C. H., & Pan, Y. F. (2006). Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids and Surfaces A: Physicochemical and Engineering, 274, 154–162.

    Google Scholar 

  40. Chiou, M. S., Ho, P. Y., & Li, H. Y. (2004). Adsorption of anionic dyes in acid solutions using chemically cross linked chitosan beads. Dyes and Pigments, 60, 69–84.

    Google Scholar 

  41. Xie, G., Xi, P., Liu, H., Chen, F., Huang, L., Shi, Y., et al. (2012). A facile chemical method to produce superparamagnetic graphene oxide Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. Journal of Materials Chemistry, 22, 1033–1039.

    Google Scholar 

  42. Lawson, J. (2010). Design and analysis of experiments with SAS, texts in statistical science. Boca Raton: Taylor & Francis.

    MATH  Google Scholar 

  43. Vining, G., & Kowalski, S. M. (2010). Statical methods for engineers (3rd ed.). Boston: Cengage Learning, Brooks/Cole.

    Google Scholar 

  44. Benyounis, K. Y., Olabi, A. G., & Hashmi, M. S. J. (2005). Effect of laser welding parameters on the heat input and weld-bead profile. Journal of Materials Processing Technology, 164, 978–985.

    Google Scholar 

  45. Rabelo, L., Bhide, S., & Gutierrez, E. (2018). Artificial intelligence: Advances in research and applications. New York: Nova Science Publishers, Inc.

    Google Scholar 

  46. Khan, S., Muhammad, K., Mumtaz, S., Baik, S. W., & de Albuquerque, V. H. C. (2019). Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet of Things Journal. Early Access. https://doi.org/10.1109/jiot.2019.2896120.

    Article  Google Scholar 

  47. Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47.

    Google Scholar 

  48. Ertel, W. (2018). Introduction to artificial intelligence. Berlin: Springer.

    Google Scholar 

  49. Hemanth, D. J., Anitha, J., & Mittal, M. (2018). Diabetic retinopathy diagnosis from retinal images using modified hopfield neural network. Journal of Medical Systems, 42(12), 247.

    Google Scholar 

  50. De Silva, C. W. (2018). Intelligent control: Fuzzy logic applications. Boca Raton: CRC Press.

    Google Scholar 

  51. Camacho-Vallejo, J. F., & Garcia-Reyes, C. (2018). Approximating the Pareto front of a bi-objective problem in telecommunication networks using a co-evolutionary algorithm. Wireless Networks. https://doi.org/10.1007/s11276-018-01921-4.

  52. Marmolejo, J. A., Velasco, J., & Selley, H. J. (2017). An adaptive random search for short term generation scheduling with network constraints. PLoS ONE, 12(2), e0172459.

    Google Scholar 

  53. Torres-Escobar, R., Marmolejo-Saucedo, J. A., & Litvinchev, I. (2018). Binary monkey algorithm for approximate packing non-congruent circles in a rectangular container. Wireless Networks. https://doi.org/10.1007/s11276-018-1869-y.

  54. Casas-Ramírez, M. S., & Camacho-Vallejo, J. F. (2017). Solving the p-median bilevel problem with order through a hybrid heuristic. Applied Soft Computing, 60, 73–86.

    Google Scholar 

  55. Martínez-Villaseñor, L., Ponce, H., Marmolejo-Saucedo, J. A., Ramírez, J. M., & Hernández, A. (2018). Analysis of constraint-handling in metaheuristic approaches for the generation and transmission expansion planning problem with renewable energy. Complexity. https://doi.org/10.1155/2018/1438196.

  56. Wang, L. (2001). Intelligent optimization algorithms with applications. Beijing: Tsinghua University and Springer Press.

    Google Scholar 

  57. Bonabeau, E., Marco, D. D. R. D. F., Dorigo, M., Théraulaz, G., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems (No. 1). Oxford: Oxford University Press.

    MATH  Google Scholar 

  58. Bozorg-Haddad, O. (Ed.). (2018). Advanced optimization by nature-inspired algorithms. Singapore: Springer.

    Google Scholar 

  59. Tabari, A., & Ahmad, A. (2017). A new optimization method: Electro-search algorithm. Computers and Chemical Engineering, 103, 1–11.

    Google Scholar 

  60. Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2007). Adsorptive removal of Auramine-O: Kinetic and equilibrium study. Journal of Hazardous Materials, 143(1–2), 386–395.

    Google Scholar 

  61. Huiping, L., Guoqun, Z., Shanting, N., & Yiguo, L. (2007). Technologic parameter optimization of gas quenching process using response surface method. Computational Materials Science, 38(4), 561–570.

    Google Scholar 

  62. Segurola, J., Allen, N. S., Edge, M., & Mc Mahon, A. (1999). Design of eutectic photoinitiator blends for UV/visible curable acrylated printing inks and coatings. Progress in Organic Coatings, 37(1–2), 23–37.

    Google Scholar 

  63. Kim, H. K., Kim, J. G., Cho, J. D., & Hong, J. W. (2003). Optimization and characterization of UV-curable adhesives for optical communications by response surface methodology. Polymer Testing, 22(8), 899–906.

    Google Scholar 

  64. Gleisy, L., Matta, I., Dornelas, B., Lambrecht, R., & Antonio da Silva, E. (2008). Dynamic isotherm of dye in activated carbon. Materials Research, 11, 15–90.

    Google Scholar 

  65. Gupta, V. K., Suhas, A. I., & Saini, V. K. (2014). Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud an aluminum industry waste. Industrial and Engineering Chemistry Research, 43, 1740–1747.

    Google Scholar 

  66. Singh, K. P., Mohan, D., Sinha, S., Tondon, G. S., & Gosh, D. (2003). Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Industrial and Engineering Chemistry Research, 42, 1965–1976.

    Google Scholar 

  67. Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, 92, 263–274.

    Google Scholar 

  68. Doğan, M., Özdemir, Y., & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes and Pigments, 75, 701–713.

    Google Scholar 

  69. Doğan, M., Alkan, M., Demirbas, Ö., Ozdemir, Y., & Ozmetin, C. (2006). Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chemical Engineering Journal, 124, 89–101.

    Google Scholar 

  70. Hoseinzadeh Hesas, R., Wan Daud, W. M. A., Sahu, J. N., & Arami-Niya, A. (2013). The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. Journal of Analytical and Applied Pyrolysis, 100, 1–11.

    Google Scholar 

  71. Guo, J., & Lua, A. C. (2000). Preparation of activated carbons from oil-palm-stone chars by microwave induced carbon dioxide activation. Carbon, 38, 1985–1993.

    Google Scholar 

  72. Liu, Q. S., Zheng, T., Li, N., Wang, P., & Abulikemu, G. (2010). Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science, 265, 3309–3315.

    Google Scholar 

  73. Kennedy, J. (2010). Particle swarm optimization. In C. Sammut, & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 760–766). Boston: Springer.

  74. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.

    MathSciNet  MATH  Google Scholar 

  75. Yang, X. S., & Deb, S. 2009. Cuckoo search via Lévy flights. In Nature and biologically inspired computing, 2009. NaBIC 2009. World Congress on (pp. 210–214). IEEE.

  76. Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73.

    Google Scholar 

  77. Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utku Kose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gezer, B., Kose, U., Zubov, D. et al. Determining optimum carob powder adsorbtion for cleaning wastewater: intelligent optimization with electro-search algorithm. Wireless Netw 26, 5665–5679 (2020). https://doi.org/10.1007/s11276-019-02035-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02035-1

Keywords

Navigation