[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A survey on QoS mechanisms in WSN for computational intelligence based routing protocols

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the rapid development in ubiquitous smart sensors, wireless sensor networks have started to evolve into numerous applications including healthcare, medical, agriculture, transportation, industry, internet of things, and smart cities. However, satisfying Quality of Service (QoS) requirements of the diverse application domains remains a challenging issue due to heterogeneous traffic flows, dynamic network conditions, and resource-constrained nature of sensor nodes. In this regard, application-specific QoS provisioning techniques have received considerable research attention at the network layer. This paper presents a systematic review on the QoS mechanisms that have been employed by routing protocols and also highlights the performance issues of each mechanism. Afterwards, the survey presents a comparative analysis of computational intelligence based QoS-aware routing protocols with their strengths and limitations. Finally, this survey discusses various potential directions for future research in the field of QoS provisioning at network layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks,52(12), 2292–2330.

    Article  Google Scholar 

  2. Bhandary, V., Malik, A., & Kumar, S. (2016). Routing in wireless multimedia sensor networks: A survey of existing protocols and open research issues. Journal of Engineering,2016, 1–27.

    Article  Google Scholar 

  3. Mendes, L. D., & Rodrigues, J. J. (2011). A survey on cross-layer solutions for wireless sensor networks. Journal of Network and Computer Applications,34(2), 523–534.

    Article  Google Scholar 

  4. Aswale, S., & Ghorpade, V. R. (2015). Survey of QoS routing protocols in wireless multimedia sensor networks. Journal of Computer Networks and Communications,2015, 1–29.

    Article  Google Scholar 

  5. Hamid, Z., & Hussain, F. B. (2014). QoS in wireless multimedia sensor networks: A layered and cross-layered approach. Wireless Personal Communications,75(1), 729–757.

    Article  Google Scholar 

  6. Gungor, V. C., & Hancke, G. P. (2009). Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Transactions on Industrial Electronics,56(10), 4258–4265.

    Article  Google Scholar 

  7. Liao, Y., Leeson, M. S., & Higgins, M. D. (2016). Flexible quality of service model for wireless body area sensor networks. Healthcare Technology Letters,3(1), 12–15.

    Article  Google Scholar 

  8. Khalid, M., Ullah, Z., Ahmad, N., Arshad, M., Jan, B., Cao, Y., & Adnan, A. (2017). A survey of routing issues and associated protocols in underwater wireless sensor networks. Journal of Sensors,2017, 1–17.

    Article  Google Scholar 

  9. Munir, S. A., Ren, B., Jiao, W., Wang, B., Xie, D., & Ma, J. (2007). Mobile wireless sensor network: Architecture and enabling technologies for ubiquitous computing. In 21st IEEE International conference on advanced information networking and applications workshops, AINAW’07 (Vol. 2, pp. 113–120).

  10. Saleem, M., Di Caro, G. A., & Farooq, M. (2011). Swarm intelligence based routing protocol for wireless sensor networks: Survey and future directions. Information Sciences,181(20), 4597–4624.

    Article  Google Scholar 

  11. Guo, W., & Zhang, W. (2014). A survey on intelligent routing protocols in wireless sensor networks. Journal of Network and Computer Applications,38, 185–201.

    Article  Google Scholar 

  12. Kumar, J., Tripathi, S., & Tiwari, R. K. (2016). A survey on routing protocols for wireless sensor networks using swarm intelligence. International Journal of Internet Technology and Secured Transactions,6(2), 79–102.

    Article  Google Scholar 

  13. Ehsan, S., & Hamdaoui, B. (2012). A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. IEEE Communications Surveys & Tutorials,14(2), 265–278.

    Article  Google Scholar 

  14. Hasan, M. Z., Al-Rizzo, H., & Al-Turjman, F. (2017). A survey on multipath routing protocols for QoS assurances in real-time wireless multimedia sensor networks. IEEE Communications Surveys & Tutorials,19(3), 1424–1456.

    Article  Google Scholar 

  15. Yessad, N., Omar, M., Tari, A., & Bouabdallah, A. (2018). QoS-based routing in wireless body area networks: A survey and taxonomy. Computing,100(3), 245–275.

    Article  MathSciNet  Google Scholar 

  16. Alanazi, A., & Elleithy, K. (2015). Real-time QoS routing protocols in wireless multimedia sensor networks: Study and analysis. Sensors,15(9), 22209–22233.

    Article  Google Scholar 

  17. Asif, M., Khan, S., Ahmad, R., Sohail, M., & Singh, D. (2017). Quality of service of routing protocols in wireless sensor networks: A review. IEEE Access,5, 1846–1871.

    Article  Google Scholar 

  18. Bhatnagar, S., Deb, B., & Nath, B. (2001). Service differentiation in sensor networks. In Proceedings of wireless personal multimedia communications.

  19. Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications,46, 198–226.

    Article  Google Scholar 

  20. Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. H. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys & Tutorials,19(2), 828–854.

    Article  Google Scholar 

  21. Xu, L., Collier, R., & O’Hare, G. M. (2017). A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet of Things Journal,4(5), 1229–1249.

    Article  Google Scholar 

  22. Korkmaz, T., & Krunz, M. (2001). Multi-constrained optimal path selection. In IEEE INFOCOM Institute of Electrical Engineers Inc (Vol. 2, pp. 834–843).

  23. Oyman, E. I., & Ersoy, C. (2004). Multiple sink network design problem in large scale wireless sensor networks. IEEE International Conference on Communications,6, 3663–3667.

    Google Scholar 

  24. Nazir, B., & Hasbullah, H. (2010). Mobile sink based routing protocol (MSRP) for prolonging network lifetime in clustered wireless sensor network. In International conference on computer applications and industrial electronics (ICCAIE) (pp. 624–629).

  25. Wang, Z. M., Basagni, S., Melachrinoudis, E., & Petrioli, C. (2005). Exploiting sink mobility for maximizing sensor networks lifetime. In Proceedings of the 38th Annual Hawaii international conference on system sciences, HICSS’05 (pp. 287a–287a).

  26. Radi, M., Dezfouli, B., Bakar, K. A., & Lee, M. (2012). Multipath routing in wireless sensor networks: Survey and research challenges. Sensors,12(1), 650–685.

    Article  Google Scholar 

  27. Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2011). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials,13(1), 68–96.

    Article  Google Scholar 

  28. Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A new meta-heuristic. In Proceedings of the IEEE congress on evolutionary computation-CEC99 (Vol. 2, pp. 1470–1477).

  29. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.

    Book  MATH  Google Scholar 

  30. Cai, W., Jin, X., Zhang, Y., Chen, K., & Wang, R. (2006). ACO based QoS routing algorithm for wireless sensor networks. In International conference on ubiquitous intelligence and computing (pp. 419–428). Berlin: Springer.

  31. Cobo, L., Quintero, A., & Pierre, S. (2010). Ant-based routing for wireless multimedia sensor networks using multiple QoS metrics. Computer Networks,54(17), 2991–3010.

    Article  Google Scholar 

  32. Zuo, Y., Ling, Z., & Yuan, Y. (2013). A hybrid multi-path routing algorithm for industrial wireless mesh networks. EURASIP Journal on Wireless Communications and Networking,2013(1), 82.

    Article  Google Scholar 

  33. Tong, M., Chen, Y., Chen, F., Wu, X., & Shou, G. (2015). An energy-efficient multipath routing algorithm based on ant colony optimization for wireless sensor networks. International Journal of Distributed Sensor Networks,11(6), 642189.

    Article  Google Scholar 

  34. Malik, S. K., Dave, M., Dhurandher, S. K., Woungang, I., & Barolli, L. (2017). An ant-based QoS-aware routing protocol for heterogeneous wireless sensor networks. Soft Computing,21(21), 6225–6236.

    Article  Google Scholar 

  35. Wang, J., Cao, J., Sherratt, R. S., & Park, J. H. (2017). An improved ant colony optimization-based approach with mobile sink for wireless sensor networks. The Journal of Supercomputing,74(12), 6633–6645.

    Article  Google Scholar 

  36. Kennedy, J. (2011). Particle swarm optimization. In: C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 760–766). Boston, MA: Springer

    Google Scholar 

  37. Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM symposium on applied computing (pp. 603–607). ACM.

  38. Liu, M., Xu, S., & Sun, S. (2012). An agent-assisted QoS-based routing algorithm for wireless sensor networks. Journal of Network and Computer Applications,35(1), 29–36.

    Article  Google Scholar 

  39. Hu, Y. F., Ding, Y. S., Ren, L. H., Hao, K. R., & Han, H. (2015). An endocrine cooperative particle swarm optimization algorithm for routing recovery problem of wireless sensor networks with multiple mobile sinks. Information Sciences,300, 100–113.

    Article  Google Scholar 

  40. Yang, J., Liu, F., Cao, J., & Wang, L. (2016). Discrete particle swarm optimization routing protocol for wireless sensor networks with multiple mobile sinks. Sensors,16(7), 1081.

    Article  Google Scholar 

  41. Wang, J., Cao, Y., Li, B., Kim, H. J., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems,76, 452–457.

    Article  Google Scholar 

  42. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization,39(3), 459–471.

    Article  MathSciNet  MATH  Google Scholar 

  43. Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation,214(1), 108–132.

    Article  MathSciNet  MATH  Google Scholar 

  44. Karaboga, D., Okdem, S., & Ozturk, C. (2012). Cluster based wireless sensor network routing using artificial bee colony algorithm. Wireless Networks,18(7), 847–860.

    Article  Google Scholar 

  45. Ari, A. A. A., Yenke, B. O., Labraoui, N., Damakoa, I., & Gueroui, A. (2016). A power efficient cluster-based routing algorithm for wireless sensor networks: Honeybees swarm intelligence based approach. Journal of Network and Computer Applications,69, 77–97.

    Article  Google Scholar 

  46. Kalyanmoy, D. (2001). Multi objective optimization using evolutionary algorithms (p. 124). New York: Wiley.

    MATH  Google Scholar 

  47. Norouzi, A., & Zaim, A. H. (2014). Genetic algorithm application in optimization of wireless sensor networks. The Scientific World Journal. https://doi.org/10.1155/2014/286575.

  48. Coello, C. C. (2006). Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine,1(1), 28–36.

    Article  MathSciNet  Google Scholar 

  49. EkbataniFard, G. H., Monsefi, R., Akbarzadeh-T, M. R., & Yaghmaee, M. H. (2010). A multi-objective genetic algorithm based approach for energy efficient QoS-routing in two-tiered wireless sensor networks. In 5th IEEE International symposium on wireless pervasive computing (ISWPC) (pp. 80–85).

  50. Murugeswari, R., Radhakrishnan, S., & Devaraj, D. (2016). A multi-objective evolutionary algorithm based QoS routing in wireless mesh networks. Applied Soft Computing,40, 517–525.

    Article  Google Scholar 

  51. Magaia, N., Horta, N., Neves, R., Pereira, P. R., & Correia, M. (2015). A multi-objective routing algorithm for wireless multimedia sensor networks. Applied Soft Computing,30, 104–112.

    Article  Google Scholar 

  52. Faheem, M., Tuna, G., & Gungor, V. C. (2018). QERP: quality-of-service (QoS) aware evolutionary routing protocol for underwater wireless sensor networks. IEEE Systems Journal,12(3), 2066–2073.

    Article  Google Scholar 

  53. Minhas, M. R., Gopalakrishnan, S., & Leung, V. C. (2009). Multiobjective routing for simultaneously optimizing system lifetime and source-to-sink delay in wireless sensor networks. In 29th IEEE international conference on distributed computing systems workshops (pp. 123–129).

  54. Gaddour, O., Koubâa, A., Baccour, N., & Abid, M. (2014). OF-FL: QoS-aware fuzzy logic objective function for the RPL routing protocol. In 12th International symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt) (pp. 365–372).

  55. Revathi, T., & Muneeswaran, K. (2017). Multi-constraint multi-objective QoS aware routing heuristics for query driven sensor networks using fuzzy soft sets. Applied Soft Computing,52, 532–548.

    Article  Google Scholar 

  56. Thrun, S., & Littman, M. L. (2000). Reinforcement learning: An introduction. AI Magazine,21(1), 103.

    Google Scholar 

  57. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research,4, 237–285.

    Article  Google Scholar 

  58. Liang, X., Balasingham, I., & Byun, S. S. (2008). A reinforcement learning based routing protocol with QoS support for biomedical sensor networks. In First international symposium on applied sciences on biomedical and communication technologies, ISABEL’08 (pp. 1–5).

  59. Jin, Z., Ma, Y., Su, Y., Li, S., & Fu, X. (2017). A Q-learning-based delay-aware routing algorithm to extend the lifetime of underwater sensor networks. Sensors,17(7), 1660.

    Article  Google Scholar 

  60. Askarzadeh, A. (2014). Bird mating optimizer: An optimization algorithm inspired by bird mating strategies. Communications in Nonlinear Science and Numerical Simulation,19(4), 1213–1228.

    Article  MathSciNet  MATH  Google Scholar 

  61. Corde, S., Chifu, V. R., Salomie, I., Chifu, E. S., & Iepure, A. (2016). Bird mating optimization method for one-to-n skill matching. In IEEE 12th International conference on intelligent computer communication and processing (ICCP) (pp. 155–162).

  62. Faheem, M., & Gungor, V. C. (2018). Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Applied Soft Computing,68, 910–922.

    Article  Google Scholar 

  63. Shokouhifar, M., & Jalali, A. (2017). Optimized sugeno fuzzy clustering algorithm for wireless sensor networks. Engineering Applications of Artificial Intelligence,60, 16–25.

    Article  Google Scholar 

  64. Amiri, E., Keshavarz, H., Alizadeh, M., Zamani, M., & Khodadadi, T. (2014). Energy efficient routing in wireless sensor networks based on fuzzy ant colony optimization. International Journal of Distributed Sensor Networks,10(7), 768936.

    Article  Google Scholar 

  65. Tian, J., Gao, M., & Ge, G. (2016). Wireless sensor network node optimal coverage based on improved genetic algorithm and binary ant colony algorithm. Eurasip Journal on Wireless Communications and Networking,2016(1), 104.

    Article  Google Scholar 

  66. Lu, J., Wang, X., Zhang, L., & Zhao, X. (2014). Fuzzy random multi-objective optimization based routing for wireless sensor networks. Soft Computing,18(5), 981–994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Kumar, D. A survey on QoS mechanisms in WSN for computational intelligence based routing protocols. Wireless Netw 26, 2465–2486 (2020). https://doi.org/10.1007/s11276-019-01978-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01978-9

Keywords

Navigation