[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Markov chain model of fault-tolerant wireless networked control systems

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless networked control systems (WNCS) are composed of spatially distributed sensors, actuators, and controllers communicating through wireless networks instead of conventional point-to-point wired connections. While WNCSs have a tremendous potential to improve the efficiency of many critical control systems, for instance, in building automation and process control, the systems are fundamentally constrained by the packet losses and the functional faults of the underlying wireless sensor and actuator networks. Understanding the interaction between wireless networks and control systems is essential to characterize the performance limitations of the critical control systems and optimize its wireless network resources. This paper presents an analytical framework for modeling the behavior of the control loop over lossy and faulty network. The control loop over wireless networks is modeled through a Markov chain taking into account sensing links, actuating links, and recovery mechanism to compensate the faulty nodes. By using this model, the novel performance metrics are mathematically derived and are evaluated through both theoretical analysis and simulation results. The performance evaluation shows the critical tradeoff between the average performance when the control loop is in the normal operation mode and the recovery performance when it is in the abnormal operating mode due to the faulty nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., et al. (2012). Toward a science of cyber–physical system integration. Proceedings of the IEEE, 100(1), 2944.

    Article  Google Scholar 

  2. Bello, O., & Zeadally, S. (2016). Intelligent device-to-device communication in the internet of things. IEEE Systems Journal, 10(3), 11721182.

    Article  Google Scholar 

  3. Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1), 138162.

    Article  Google Scholar 

  4. Kim, K. D., & Kumar, P. R. (2012). Cyber physical systems: A perspective at the centennial. Proceedings of the IEEE, 100, 12871308.

    Google Scholar 

  5. Al-Dabbagh, A. W., & Chen, T. (2016). Design considerations for wireless networked control systems. IEEE Transactions on Industrial Electronics, 63, 5547–5557.

    Article  Google Scholar 

  6. Petersen, S., & Carlsen, S. (2011). WirelessHART versus ISA100.11a: The format war hits the factory floor. IEEE Industrial Electronics Magazine, 5(4), 2334.

    Article  Google Scholar 

  7. Bill, P., Kranich, M., & Chari, N. (2013). Fine mesh 802.11 wireless network connectivity. ABB, Technical report

  8. Blaney, J. (2009). Wireless proves its value. Power Engineering, 113(2), 38.

    Google Scholar 

  9. Pister, K., Thubert, P., Systems, C., Dwars, S., & Phinney, T. (2009). Industrial routing requirements in low-power and lossy networks. IETF.

  10. Bahramgiri, M., Hajiaghayi, M., & Mirrokni, V. S. (2006). Fault-tolerant and 3-dimensional distributed topology control algorithms in wireless multi-hop networks. Wireless Networks, 12(2), 179188.

    Article  Google Scholar 

  11. Thallner, B., Moser, H., & Schmid, U. (2010). Topology control for fault-tolerant communication in wireless ad hoc networks. Wireless Networks, 16(2), 387404.

    Article  Google Scholar 

  12. Saha, I., Sambasivan, L. K., Ghosh, S. K., & Patro, R. K. (2010). Distributed fault-tolerant topology control in wireless multi-hop networks. Wireless Networks, 16(6), 15111524.

    Article  Google Scholar 

  13. Azharuddin, M., & Jana, P. K. (2015). A distributed algorithm for energy efficient and fault tolerant routing in wireless sensor networks. Wireless Networks, 21(1), 251267.

    Article  Google Scholar 

  14. Kwon, K., Kim, S. H., Ha, M., & Kim, D. (2016). Traffic-aware stateless multipath routing for fault-tolerance in IEEE 802.15.4 wireless mesh networks. Wireless Networks. https://doi.org/10.1007/s11276-016-1427-4.

    Google Scholar 

  15. Patankar, R. P. (2004). A model for fault-tolerant networked control system using TTP/C communication. IEEE Transactions on Vehicular Technology, 53(5), 14611467.

    Article  Google Scholar 

  16. Pajic, M., Chernoguzov, A., & Mangharam, R. (2013). Robust architectures for embedded wireless network control and actuation. ACM Transactions on Embedded Computing Systems, 11(4), 82–182.

    Google Scholar 

  17. Xiong, J., & Lam, J. (2009). Stabilization of networked control systems with a logic ZOH. IEEE Transactions on Automatic Control, 54(2), 358363.

    Article  MathSciNet  MATH  Google Scholar 

  18. Heemels, W. P. M. H., Teel, A. R., van de Wouw, N., & Nesic, D. (2010). Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance. IEEE Transactions on Automatic Control, 55(8), 17811796.

    Article  MathSciNet  MATH  Google Scholar 

  19. Rabi, M., Stabellini, L., Proutiere, A., & Johansson, M. (2010). Networked estimation under contention-based medium access. International Journal of Robust and Nonlinear Control, 20(2), 140–155.

    Article  MathSciNet  MATH  Google Scholar 

  20. Schenato, L., Sinopoli, B., Franceschetti, M., Poola, K., & Sastry, S. (2007). Foundations of control and estimation over lossy networks. Proceedings of the IEEE, 95(1), 163–187.

    Article  Google Scholar 

  21. Srinivasan, K., Kazandjieva, M. A., Agarwal, S., & Levis, P. (2008). The beta-factor: Measuring wireless link burstiness. In ACM SenSys.

  22. Srinivasan, K., Jain, M., Choi, J. I., Azim, T., Kim, E. S., Levis, P., & Krishnamachari, B. (2010). The kappa factor: Inferring protocol performance using inter-link reception correlation. In ACM MobiCom.

  23. IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-rate wireless personal area networks (LR-WPANs) amendment 1: MAC sublayer. In IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011) (pp. 1–225) (2012).

  24. Scheible, G., Dzung, D., Endresen, J., & Frey, J. E. (2007). Unplugged but connected design and implementation of a truly wireless real-time sensor/actuator interface. IEEE Industrial Electronics Magazine, 1(2), 25–34.

    Article  Google Scholar 

  25. Jentzen, A., Leber, F., Schneisgen, D., Berger, A., & Siegmund, S. (2010). An improved maximum allowable transfer interval for IP-stability of networked control systems. IEEE Transactions on Automatic Control, 55(1), 179184.

    Article  MATH  Google Scholar 

  26. Sadi, Y., Ergen, S. C., & Park, P. (2014). Minimum energy data transmission for wireless networked control systems. IEEE Transactions on Wireless Communications, 13(4), 21632175.

    Article  Google Scholar 

  27. Park, P. (2015). Traffic generation rate control of wireless sensor and actuator networks. IEEE Communications Letters, 19(5), 827830.

    Article  Google Scholar 

  28. Fridman, E. (2014). Introduction to time-delay systems: analysis and control. Basel: Birkhäuser.

    Book  MATH  Google Scholar 

  29. Billinton, R., & Allan, R. (1992). Reliability evaluation of engineering systems: Concepts and techniques. New York, NY: Plenum Press.

    Book  MATH  Google Scholar 

  30. Grinstead, C. M., & Snell, J. L. (1998). Introduction to probability. Providence, RI: American Mathematical Society.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pangun Park.

Additional information

This work was supported by research fund of Chungnam National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, P. Markov chain model of fault-tolerant wireless networked control systems. Wireless Netw 25, 2291–2303 (2019). https://doi.org/10.1007/s11276-017-1657-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1657-0

Keywords

Navigation