[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fast matching pursuit for wideband spectrum sensing in cognitive radio networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wideband spectrum sensing is one of the most challenging components of cognitive radio networks. It should be performed as fast and accurately as possible. Traditional wideband spectrum sensing techniques suffer from the requirement of analog-to-digital converters with very high sampling rates. Compressed sensing has been recently considered as a technique that may enable wideband spectrum sensing at a much lower sampling rate than that dictated by the Nyquist theorem. However, the complexity and speed of existing compressed sensing reconstruction techniques remained a barrier for such an application. In this paper, we introduce fast matching pursuit (FMP), a fast and accurate greedy recovery algorithm for compressed sensing. We show that the spectral data are sparse in the Haar wavelet and wavelet packet domains. We apply FMP to wideband spectrum sensing for cognitive radio networks. Our proposed algorithm is capable of reconstructing spectrum signals from samples at a rate of about 25% of the Nyquist rate, significantly faster than other related algorithms, at more than 99% probability of detection and less than 1% probability of false alarm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Proakis, J., & Salehi, M. (2007). Digital communications. New York: McGraw-Hill Education.

    Google Scholar 

  2. Sun, H., Laurenson, D. I., & Wang, C. X. (2010). Computationally tractable model of energy detection performance over slow fading channels. IEEE Communications Letters, 14(10), 924–926.

    Article  Google Scholar 

  3. Dandawaté, A. V., & Giannakis, G. B. (1994). Statistical tests for presence of cyclostationarity. IEEE Transactions on Signal Processing, 42(9), 2355–2369.

    Article  Google Scholar 

  4. Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.

    Article  MathSciNet  MATH  Google Scholar 

  5. Farhang-Boroujeny, B. (2008). Filter bank spectrum sensing for cognitive radios. IEEE Transactions on Signal Processing, 56(5), 1801–1811.

    Article  MathSciNet  MATH  Google Scholar 

  6. Xin, Y., & Zhang, H. (2009). A simple sequential spectrum sensing scheme for cognitive radio. arXiv preprint arXiv:0905.4684.

  7. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  8. Eldar, Y. C., & Kutyniok, G. (2012). Compressed sensing: Theory and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  9. Boche, H., Calderbank, R., Kutyniok, G., & Vybíral, J. (2015). Compressed sensing and its applications. Berlin: Springer.

    Book  MATH  Google Scholar 

  10. Tropp, J., & Gilbert, A. C. (2007). Signal recovery from partial information via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  11. Needell, D., & Tropp, J. A. (2010). COSAMP: Iterative signal recovery from incomplete and inaccurate samples. Communications of the ACM, 53(12), 93–100.

    Article  MATH  Google Scholar 

  12. Abdel-Sayed, M. M., Khattab, A., & Abu-Elyazeed, M. F. (2016). Adaptive reduced-set matching pursuit for compressed sensing recovery. In IEEE international conference on image processing (ICIP). Phoenix, AZ.

  13. Abdel-Sayed, M. M., Khattab, A., & Abu-Elyazeed, M. F. (2016). RMP: Reduced-set matching pursuit approach for efficient compressed sensing signal reconstruction. Journal of Advanced Research, 7(6), 851–861.

    Article  Google Scholar 

  14. Khattab, A., Perkins, D., & Bayoumi, M. (2013). Cognitive radio networks: From theory to practice. Berlin: Springer.

    Book  MATH  Google Scholar 

  15. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  16. Bhowmick, A., Chandra, A., Roy, S. D., & Kundu, S. (2015). Double threshold-based cooperative spectrum sensing for a cognitive radio network with improved energy detectors. IET Communications, 9(18), 2216–2226.

    Article  Google Scholar 

  17. Ariananda, D. D., & Leus, G. (2012). Cooperative compressive wideband power spectrum sensing. In IEEE Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 303–307). Pacific Grove, CA.

  18. Bazerque, J. A., & Giannakis, G. B. (2010). Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Transactions on Signal Processing, 58(3), 1847–1862.

    Article  MathSciNet  MATH  Google Scholar 

  19. López-Parrado, A., & Velasco-Medina, J. (2016). Cooperative wideband spectrum sensing based on sub-nyquist sparse fast Fourier transform. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(1), 39–43.

    Article  Google Scholar 

  20. Reyes, H., Subramaniam, S., Kaabouch, N., & Hu, W. C. (2016). A spectrum sensing technique based on autocorrelation and euclidean distance and its comparison with energy detection for cognitive radio networks. Computers & Electrical Engineering, 52, 319–327.

    Article  Google Scholar 

  21. Wang, S., Zhou, Z. H., Ge, M., & Wang, C. (2012). Resource allocation for heterogeneous multiuser OFDM-based cognitive radio networks with imperfect spectrum sensing. In IEEE INFOCOM. Orlando, FL.

  22. Wang, S., Zhou, Z. H., Ge, M., & Wang, C. (2013). Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing. IEEE Journal on Selected Areas in Communications, 31(3), 464–475.

    Article  Google Scholar 

  23. Khattab, A., Perkins, D., & Bayoumi, M. (2013). Design, implementation and characterization of practical distributed cognitive radio networks. IEEE Transactions on Communications, 61(10), 4139–4150.

    Article  Google Scholar 

  24. Tian, Z., & Giannakis, G. B. (2006). A wavelet approach to wideband spectrum sensing for cognitive radios. In 1st International conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 1–5). Mykonos Island, Greece.

  25. Sun, H., Nallanathan, A., Wang, C. X., & Chen, Y. (2013). Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wireless Communications, 20(2), 74–81.

    Article  Google Scholar 

  26. Tian, Z., & Giannakis, G. B. (2007). Compressed sensing for wideband cognitive radios. In IEEE international conference on acoustics, speech and signal processing (ICASSP). Honolulu, HI.

  27. La, C., & Do, M. N. (2006). Tree-based orthogonal matching pursuit algorithm for signal reconstruction. In IEEE international conference on image processing (ICIP) (pp. 1277–1280). Atlanta, GA.

  28. Bui, H., La, C., & Do, M. (2015). A fast tree-based algorithm for compressed sensing with sparse-tree prior. Signal Processing, 108, 628–641.

    Article  Google Scholar 

  29. Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38(2), 617–643.

    Article  MathSciNet  MATH  Google Scholar 

  30. Egilmez, H. E., & Ortega, A. (2015). Wavelet-based compressed spectrum sensing for cognitive radio wireless networks. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3157–3161). Queensland, Australia.

  31. Wang, Y., Tian, Z., & Feng, C. (2010). A two-step compressed spectrum sensing scheme for wideband cognitive radios. In IEEE global telecommunications conference (GLOBECOM) (pp. 1–5). Miami, FL.

  32. Sun, H., Chiu, W. Y., & Nallanathan, A. (2012). Adaptive compressive spectrum sensing for wideband cognitive radios. IEEE Communications Letters, 16(11), 1812–1815.

    Article  Google Scholar 

  33. Tian, Z., Tafesse, Y., & Sadler, B. M. (2012). Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 6(1), 58–69.

    Article  Google Scholar 

  34. Davenport, M. A., Boufounos, P. T., Wakin, M. B., & Baraniuk, R. G. (2010). Signal processing with compressive measurements. IEEE Journal of Selected Topics in Signal Processing, 4(2), 445–460.

    Article  Google Scholar 

  35. Hong, S. (2010) Direct spectrum sensing from compressed measurements. In IEEE military communications conference (MILCOM) (pp. 1187–1192). San Jose, CA.

  36. Cohen, D., & Eldar, Y. C. (2014). Sub-nyquist sampling for power spectrum sensing in cognitive radios: A unified approach. IEEE Transactions on Signal Processing, 62(15), 3897–3910.

    Article  MathSciNet  MATH  Google Scholar 

  37. Rudelson, M., & Vershynin, R. (2008). On sparse reconstruction from Fourier and Gaussian measurements. Communications on Pure and Applied Mathematics, 61(8), 1025–1045.

    Article  MathSciNet  MATH  Google Scholar 

  38. Haviv, I., & Regev, O. (2015). The restricted isometry property of subsampled Fourier matrices. arXiv preprint, arXiv:1507.01768.

  39. Unser, M., & Tafti, P. D. (2011). Stochastic models for sparse and piecewise-smooth signals. IEEE Transactions on Signal Processing, 59(3), 989–1006.

    Article  MathSciNet  MATH  Google Scholar 

  40. Björck, A. (1996). Numerical methods for least squares problems. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  41. Donoho, D. L., Tsaig, Y., Drori, I., & Starck, J. L. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 58(2), 1094–1121.

    Article  MathSciNet  MATH  Google Scholar 

  42. Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  Google Scholar 

  43. Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61.

    Article  MathSciNet  MATH  Google Scholar 

  44. Coifman, R. R., & Wickerhauser, M. V. (1992). Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 38(2), 713–718.

    Article  MATH  Google Scholar 

  45. Ruch, D. K., & Van Fleet, P. J. (2011). Wavelet theory: An elementary approach with applications. Hoboken: Wiley.

    Google Scholar 

  46. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Khattab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Sayed, M.M., Khattab, A. & Abu-Elyazeed, M.F. Fast matching pursuit for wideband spectrum sensing in cognitive radio networks. Wireless Netw 25, 131–143 (2019). https://doi.org/10.1007/s11276-017-1545-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1545-7

Keywords

Navigation