[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the packet allocation of multi-band aggregation wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The use of heterogeneous networks with multiple radio access technologies (RATs) is a system concept that both academia and industry are studying. In such system, integrated use of available multiple RATs is essential to achieve beyond additive throughput and connectivity gains using multi-dimensional diversity. This paper considers an aggregation module called opportunistic multi-MAC aggregation (OMMA). It resides between the IP layer and the air interface protocol stacks, common to all RATs in the device. We present a theoretical framework for such system while considering a special case of multi-RAT systems, i.e., a multi-band wireless LAN (WLAN) system. An optimal packet distribution approach is derived which minimizes the average packet latency (the sum of queueing delay and serving delay) over multiple bands. It supports multiple user terminals with different QoS classes simultaneously. We further propose a packet scheduling algorithm, OMMA Leaky Bucket, which minimizes the packet end-to-end delay, i.e., the sum of average packet latency and average packet reordering delay. We also describe the system architecture of the proposed OMMA system, which is applicable for the general case of the multi-RAT devices. It includes functional description, discovery and association processes, and dynamic RAT update management. We finally present simulation results for a multi-band WLAN system. It shows the performance gains of the proposed OMMA Leaky Bucket scheme in comparison to other existing packet scheduling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Elkourdi, T., Chincholi, A., Le, T., & Demir, A. (2013). Cross-layer optimization for opportunistic multi-MAC aggregation. In IEEE vehicular technology conference (VTC Spring) (pp. 1–5).

  2. Himayat, N., Yeh, S.-P., Panah, A., Talwar, S., Gerasimenko, M., Andreev, S., & Koucheryavy, Y. (2014). Multi-radio heterogeneous networks: Architectures and performance. In International conference on computing, networking and communications (ICNC) (pp. 252–258).

  3. Zhang, D., Vitthaladevuni, P. K., Mohanty, B., & Hou, J. (2010). Performance analysis of dual-carrier HSDPA. In IEEE vehicular technology conference (VTC Spring) (pp. 1–5).

  4. Koudouridis, G. P., Yaver, A., & Khattak, M. U. (2009). Performance evaluation of multi-radio transmission diversity for TCP flows. In IEEE vehicular technology conference (VTC Spring).

  5. Koudouridis, G., Lundqvist, H., Karimi, H., & Karlsson, G. (2015). A quantitative analysis of the throughput gains and the energy efficiency of multi-radio transmission diversity in dense access networks. Telecommunication Systems, 59(1), 145–168.

    Article  Google Scholar 

  6. NETGEAR. (2011). Why choose simultaneous dual band? http://www.netgear.com/landing/dual-band.aspx.

  7. Han, H., Shakkottai, S., Hollot, C. V., Srikant, R., & Towsley, D. (2006). Multipath TCP: A joint congestion control and routing scheme to exploit path diversity in the internet. IEEE/ACM Transactions on Networking, 14(6), 1260–1271.

    Article  Google Scholar 

  8. Kelly, F., & Voice, T. (2005). Stability of end-to-end algorithms for joint routing and rate control. ACM SIGCOMM Computer Communication Review, 35(2), 5–12.

    Article  Google Scholar 

  9. Ford, A., Raiciu, C., Handley, M., & Bonaventure, O. (2013). TCP extensions for multipath operation with multiple addresses. RFC 6824.

  10. Key, P., Massoulie, L., & Towsley, D. (2007). Multipath routing, congestion control and dynamic load balancing. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (Vol 4, pp. 1341–1344).

  11. Koudouridis, G., Agero, R., Alexandri, E., Choque, J., Dimou, K., Arimi, H., et al. (2005). Generic link layer functionality for multi-radio access networks. In IST mobile and wireless communications summit.

  12. Dimou, K., Agero, R., Bortnik, M., Karimi, R., Koudouridis, G., Kaminski, S., et al. (2005). Generic link layer: A solution for multiradio transmission diversity in communication networks beyond 3G. In IEEE vehicular technology conference (VTC Fall).

  13. IEEE 802.1 OmniRAN task group. https://mentor.ieee.org/omniran/bp/StartPage.

  14. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wang, X., & Quek, T. Q. S. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3481–3493.

    Article  Google Scholar 

  15. Zheng, Q., Zheng, K., Zhang, H., & Leung, V. C. M. (2016). Delay-optimal virtualized radio resource scheduling in software-defined vehicular networks via stochastic learning. IEEE Transactions on Vehicular Technology, 65(10), 7857–7867.

    Article  Google Scholar 

  16. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.

    Article  Google Scholar 

  17. Trinh, X.-D., Jo, G., Lee, J., Na, J.-H., Park, W. & Cho, H.-S. (2012). A radio resource switching scheme in aggregated radio access network. In 7th international conference on digital telecommunications.

  18. Choi, Y., Kim, H., Han, S., & Han, Y. (2010). Joint resource allocation for parallel multi-radio access in heterogeneous wireless networks. IEEE Transactions on Wireless Communications, 9(11), 3324–3329.

    Article  Google Scholar 

  19. Chen, F., Zhai, H., & Fang, Y. (2009). An opportunistic multiradio MAC protocol in multirate wireless ad hoc networks. IEEE Transactions on Wireless Communications, 8(5), 2642–2651.

    Article  Google Scholar 

  20. Cui, Y., Xu, Y., Sha, X., Xu, R. & Ding, Z. (2009). A novel multi-radio packet scheduling algorithm for real-time traffic on generic link layer. In 15th Asia-Pacific conference on communications (pp. 122–125).

  21. Koudouridis, G., Soldati, P., & Karlsson, G. (2016). Multiple connectivity and spectrum access utilisation in heterogeneous small cell networks. Springer International Journal of Wireless Information Networks, 23(1), 1–18.

    Article  Google Scholar 

  22. Zhou, Y., Chen, J., & Kuo, Y. (2016). Fairness resource allocation for parallel multi-radio access in cognitive multi-cell. Springer Wireless Personal Communications, 88(3), 587–602.

    Article  Google Scholar 

  23. Wu, Y., Viswanathan, H., Klein, T. E., Haner, M., & Calderbank, A. R. (2011). Capacity optimization in networks with heterogeneous radio access technologies. In IEEE global telecommunications conference (GLOBECOM) (pp. 1–5).

  24. Kon, Y., Ito, M., Hassel, N., Hasegawa, M., Ishizu, K., & Harada, H. (2012). Autonomous parameter optimization of a heterogeneous wireless network aggregation system using machine learning algorithms. In IEEE consumer communications and networking conference (CCNC) (pp. 894–898).

  25. Krishnaswamy, D., Zhang, D., Soliman, S., Mohanty, B., Cavendish, D., Ge, W., & Eravelli, S. (2012). Concurrent bandwidth aggregation over wireless networks. In IEEE international conference on computing, communications, and networking (ICNC).

  26. Ramaboli, A. L., Falowo, O. E., & Chan, A. H. (2012). Bandwidth aggregation in heterogeneous wireless networks: A survey of current approaches and issues. Journal of Network and Computer Applications, 35(6), 1674–1690.

    Article  Google Scholar 

  27. CNET. (2015). Broadcom’s new real dual-band WiFi chip speeds things up. http://www.cnet.com/news/broadcoms-new-real-dual-band-wi-fi-chip-speeds-things-up.

  28. IEEE Std. 802.11n. (2009). Wireless LAN medium access control (MAC) and physical layer (PHY) specification amendment 5: Enhancements for higher throughput.

  29. IEEE Std. 802.11ac. (2013). Wireless LAN medium access control (MAC) and physical layer (PHY) specification amendment 4: Enhancements for very high throughput.

  30. IEEE Std. 802.11e. (2005). Wireless LAN medium access control (MAC) and physical layer (PHY) specification amendment 8: Medium access control (MAC) quality of service enhancements.

  31. Bertsekas, D. P., & Gallager, R. (1992). Data networks (2nd ed.). Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  32. Eldad, P., & Robert, S. (2008). Throughput, robustness, and reliability in 802.11n. Cambridge: Cambridge University Press.

    Google Scholar 

  33. Pierre, D. A. (1986). Optimization theory with applications. New York: Dover Publications.

    Google Scholar 

  34. Yan, Z., Veeraraghavan, M., Tracy, C., & Guok, C. (2013). On how to provision quality of service (QoS) for large dataset transfers. In Proceedings of the sixth international conference on communication theory, reliability, and quality of service (CTRQ) (pp. 21–26).

  35. Zhou, X., & Van Mieghem, P. (2004). Reordering of IP packets in internet. In Springer passive and active network measurement (pp. 237–246).

  36. Vlavianos, A., Law, L. K., Broustis, I., Krishnamurthy, S. V. & Faloutsos, M. (2008). Assessing link quality in IEEE 802.11 wireless networks: Which is the right metric? in IEEE 19th international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1–6).

  37. Schwartz, M. (1996). Broadband integrated networks. New Jersey: Prentice Hall PTR.

    Google Scholar 

  38. End-user multimedia QoS categories. (2001). ITU Std. G., 1010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, S., Le, T.B., Chincholi, A. et al. On the packet allocation of multi-band aggregation wireless networks. Wireless Netw 24, 2521–2537 (2018). https://doi.org/10.1007/s11276-017-1486-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1486-1

Keywords