[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On throughput capacity of large-scale ad hoc networks with realistic buffer constraint

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The problem of determining the throughput capacity of an ad hoc network is addressed. Previous studies mainly focused on the infinite buffer scenario, however, in this paper we consider a large-scale ad hoc network with a scalable traffic model, where each node has a buffer of size B packets, and explore its corresponding per node throughput performance. We first model each node as a G/G/1/B queuing system which incorporates the important wireless interference and medium access contention. With the help of this queuing model, we then explore the properties of the throughput upper bound for all scheduling schemes. Based on these properties, we further develop an analytical approach to derive the expressions of per node throughput capacity for the concerned buffer-limited ad hoc network. The results show that the cumulative effect of packet loss due to the per hop buffer overflowing will degrade the throughput performance, and the degradation is inversely proportional to the buffer size. Finally, we provide the specific scheduling schemes which enable the per node throughput to approach its upper bound, under both symmetrical and unsymmetrical network topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The term of scaling law usually appears together with notations (\(O,\Omega ,\varTheta ,o,\omega\)) [4], and is used to describe the growth rate of the per node throughput as the number of nodes tends to infinity.

  2. Please kindly notice that the queue discipline has no impact on the per node throughput performance.

References

  1. Perkins, C. E. (2008). Ad hoc networking. Boston: Addison-Wesley Professional.

    Google Scholar 

  2. Ramanathan, R., & Redi, J. (2002). A brief overview of ad hoc networks: Challenges and directions. IEEE Communications Magazine, 40(5), 20–22.

    Article  Google Scholar 

  3. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. Cambridge: MIT Press.

    MATH  Google Scholar 

  5. Li, J., Blake, C., De Couto, D. S., Lee, H. I., & Morris, R. (2001). Capacity of ad hoc wireless networks. In Proceedings of the 7th annual international conference on mobile computing and networking (pp. 61–69).

  6. Grossglauser, M., & Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477–486.

    Article  Google Scholar 

  7. Neely, M. J., & Modiano, E. (2005). Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Transactions on Information Theory, 51(6), 1917–1937.

    Article  MathSciNet  MATH  Google Scholar 

  8. Andrews, J., Shakkottai, S., Heath, R., Jindal, N., Haenggi, M., Berry, R., et al. (2008). Rethinking information theory for mobile ad hoc networks. IEEE Communications Magazine, 46(12), 94–101.

    Article  Google Scholar 

  9. Goldsmith, A., Effros, M., Koetter, R., Mdard, M., Ozdaglar, A., & Zheng, L. (2011). Beyond shannon: the quest for fundamental performance limits of wireless ad hoc networks. IEEE Communications Magazine, 49(5), 195–205.

    Article  Google Scholar 

  10. Zhou, N., Wu, H., & Abouzeid, A. A. (2005). The impact of traffic patterns on the overhead of reactive routing protocols. IEEE Journal on Selected Areas in Communications, 23(3), 547–560.

    Article  Google Scholar 

  11. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  12. Robertazzi, T. G. (2000). Computer networks and systems: Queueing theory and performance evaluation. Berlin: Springer Science & Business Media.

    Book  MATH  Google Scholar 

  13. Takahashi, A., Takahashi, Y., Kaneda, S., & Shinagawa, N. (2007). Diffusion approximations for the GI/G/c/K queue. In Proceedings of IEEE ICCCN (pp. 681–686).

  14. Granas, A., & Dugundji, J. (2003). Fixed point theory. Berlin: Springer Science & Business Media.

    Book  MATH  Google Scholar 

  15. Stewart, J. (2011). Calculus. Boston: Cengage Learning.

    MATH  Google Scholar 

  16. Li, F., & Wang, Y. (2008). Circular sailing routing for wireless networks. In Proceedings of IEEE INFOCOM (pp. 1346–1354).

  17. Coxeter, H. S. M. (1969). Introduction to geometry. New York: Wiley.

    MATH  Google Scholar 

  18. El Gamal, A., Mammen, J., Prabhakar, B., & Shah, D. (2006). Optimal throughput-delay scaling in wireless networks-part I: The fluid model. IEEE Transactions on Information Theory, 52(6), 2568–2592.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, X., Sharma, G., Mazumdar, R. R., & Shroff, N. B. (2006). Degenerate delay-capacity tradeoffs in ad-hoc networks with brownian mobility. IEEE/ACM Transactions on Networking, 14(SI), 2777–2784.

    MathSciNet  MATH  Google Scholar 

  20. Mammen, J., & Shah, D. (2007). Throughput and delay in random wireless networks with restricted mobility. IEEE Transactions on Information Theory, 53(3), 1108–1116.

    Article  MathSciNet  MATH  Google Scholar 

  21. Sharma, G., Mazumdar, R., & Shroff, N. B. (2007). Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. IEEE/ACM Transactions on Networking, 15(5), 981–992.

    Article  Google Scholar 

  22. Ciullo, D., Martina, V., Garetto, M., & Leonardi, E. (2011). Impact of correlated mobility on delay-throughput performance in mobile ad hoc networks. IEEE/ACM Transactions on Networking, 19(6), 1745–1758.

    Article  Google Scholar 

  23. Xie, L. L., & Kumar, P. R. (2004). A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory, 50(5), 748–767.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, G., Xu, Y., Wang, X., & Guizani, M. (2010). Capacity of hybrid wireless networks with directional antenna and delay constraint. IEEE Transactions on Communications, 58(7), 2097–2106.

    Article  Google Scholar 

  25. Wang, X., Huang, W., Wang, S., Zhang, J., & Hu, C. (2011). Delay and capacity tradeoff analysis for motioncast. IEEE/ACM Transactions on Networking, 19(5), 1354–1367.

    Article  Google Scholar 

  26. Huang, W., & Wang, X. (2012). Capacity scaling of general cognitive networks. IEEE/ACM Transactions on Networking, 20(5), 1501–1513.

    Article  Google Scholar 

  27. Lee, S. H., & Chung, S. Y. (2012). Capacity scaling of wireless ad hoc networks: Shannon meets Maxwell. IEEE Transactions on Information Theory, 58(3), 1702–1715.

    Article  MathSciNet  Google Scholar 

  28. Lu, N., & Shen, X. S. (2014). Scaling laws for throughput capacity and delay in wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(2), 642–657.

    Article  Google Scholar 

  29. Toumpis, S., & Goldsmith, A. J. (2003). Capacity regions for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 2(4), 736–748.

    Article  Google Scholar 

  30. Urgaonkar, R., & Neely, M. J. (2011). Network capacity region and minimum energy function for a delay-tolerant mobile ad hoc network. IEEE/ACM Transactions on Networking, 19(4), 1137–1150.

    Article  Google Scholar 

  31. Law, L. K., Krishnamurthy, S. V., & Faloutsos, M. (2008). Capacity of hybrid cellular-ad hoc data networks. In IEEE INFOCOM (pp. 1346–1354).

  32. Shila, D. M., & Cheng, Y. (2012). Ad hoc wireless networks meet the infrastructure: Mobility, capacity and delay. In Proceedings of IEEE INFOCOM (pp. 3031–3035).

  33. Li, P., & Fang, Y. (2012). On the throughput capacity of heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 11(12), 2073–2086.

    Article  Google Scholar 

  34. Herdtner, J. D., & Chong, E. K. (2005). Throughput-storage tradeoff in ad hoc networks. In Proceedings of IEEE INFOCOM (pp. 2536–2542).

  35. Subramanian, R., Vellambi, B. N., & Fekri, F. (2009). A generalized framework for throughput analysis in sparse mobile networks. In IEEE WiOPT (pp. 1–10).

  36. Subramanian, R., & Fekri, F. (2009). Analysis of multiple-unicast throughput in finite-buffer delay-tolerant networks. In IEEE ISIT (pp. 1634–1638).

  37. Liu, J., Sheng, M., Xu, Y., Li, J., & Jiang, X. (2015). On throughput capacity for a class of buffer-limited MANETs. Ad Hoc Networks. doi:10.1016/j.adhoc.2015.08.029.

    Google Scholar 

  38. Liu, J., Sheng, M., Xu, Y., Li, J., & Jiang, X. (2015). End-to-end delay modeling in buffer-limited MANETs: A general theoretical framework. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2015.2475258.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by China NSFC Grants 61100153, 61373173, U1536202, and Fundamental Research Funds for the Central Universities BDY131419.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, J., Shen, Y. et al. On throughput capacity of large-scale ad hoc networks with realistic buffer constraint. Wireless Netw 23, 193–204 (2017). https://doi.org/10.1007/s11276-015-1146-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1146-2

Keywords

Navigation