[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On efficient 3D data dissemination

  • Published:
Wireless Networks Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Data broadcast is an advanced technique to realize large scalability and bandwidth utilization in a mobile computing environment. Three dimensional (3D) contents are emerging data in the data broadcast. However, traditional data broadcast did not consider 3D data to design a data schedule in a broadcast channel. Therefore, the abovedrawback leads to large access delay in the 3D data broadcast. In this paper, we remedy the problem by devising an indexing technique to index the 3D data of variant geometry shapes. We propose an indexing technique using a 3D data index tree to minimize average waiting time and average tuning time for broadcasting the 3D data. Experimental results show that our approach is able to generate broadcast programs including the 3D data indices with high quality and is very efficient in the 3D data broadcast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acharya, S. & Muthukrishnan, S. (1998). Scheduling on-demand broadcasts: New metrics and algorithms. In Proceedings of the 4th ACM/IEEE international conference on mobile computing and networking (pp. 43–54).

  2. Aksoy, D. & Franklin, M. (1999). Rxw: A scheduling approach for large-scale on-demand data broadcast. IEEE/ACM Transactions on Networking, 7(6), 846–860.

    Article  Google Scholar 

  3. Aksoy, D. & Franklin, M. J. (1998). Scheduling for large-scale on-demand data broadcasting. In Proceedings of IEEE INFOCOM.

  4. Al-Regib, G., Altunbasak, Y. & Mersereau, R. M. (2005). Bit allocation for joint source and channel coding of progressively compressed 3-D models. IEEE Transactions on Circuits and Systems for Video Technology, 15(2), 256–268.

    Article  Google Scholar 

  5. Alliez, P. & Desbrun, M. (2001). Progressive compression for lossless transmission of triangle meshes. In ACM conference on computer graphics and interactive techniques (SIGGRAPH) (pp. 195–202).

  6. Alonso, R. & Korth, H. F. (1993). Database system issues in nomadic computing. In Proceedings of ACM SIGMOD’93 (pp. 388–392).

  7. Alregib, G., Altunbasak, Y. & Rossignac, J. (2005). Error-resilient transmission of 3D models. ACM Transactions on Graphics, 24(2), 182–208.

    Article  Google Scholar 

  8. AlRegib, G., Altunbasak, Y. & Rossignac, J. (2005). An unequal error protection method for progressively transmitted 3-D models. Transactions on Multimedia, 7(4), 766–776.

    Article  Google Scholar 

  9. Barbará, D. (1999). Mobile computing and database—a survey. IEEE Transactions on Knowledge and Data Engineering, 11(1), 108–117.

    Article  Google Scholar 

  10. Bischoff, S. & Kobbelt, L. (2002). Streaming 3D geometry data over lossy communication channels. In IEEE international conference on multimedia and expo (ICME).

  11. Bustos, B., Keim, D. A., Saupe, D., Schreck, T. & Vrani, D. V. (2004). Using entropy impurity for improved 3D object similarity search. In IEEE international conference on multimedia and expo (ICME) (pp. 1303–1306).

  12. Cacciaguerra, S., Ferretti, S., Roccetti, M. & Roffilli, M. (2005). Car racing through the streets of the web: A high-speed 3D game over a fast synchronization service. In ACM international conference on World Wide Web (WWW).

  13. Chen, M.-S., Yu, P. S. & Wu, K. -L. (2003). Optimizing index allocation for sequential data broadcasting in wireless mobile computing. IEEE Transactions on Knowledge and Data Engineering, 15(1), 161–173.

    Article  Google Scholar 

  14. Chu, C.-H. (2012). Effective spatial data broadcasting. In IEEE international conference on multimedia and expo (ICME).

  15. Chu, C.-H., Hung, H.-P. & Chen, M.-S. (2007). Variant bandwidth channel allocation in the data broadcasting environment. In IEEE international conference on mobile data management (MDM-07).

  16. Cotin, S., Delingette, H. & Ayache, N. (1999). Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics, 5(1), 62–73

    Article  Google Scholar 

  17. Datta, A., VanderMeer, D. E., Celik, A. & Kumar, V. (1999). Broadcast protocols to support efficient retrieval from databases by mobile users. ACM Transactions on Database Systems, 24(1), 1–79.

    Article  Google Scholar 

  18. Deering, M. (1995). Geometry compression. In ACM SIGGRAPH (pp. 13–20).

  19. Hameed, S. & Vaidya, N. H. (1997). Log-time algorithms for scheduling single and multiple channel data broadcast. In ACM international conference on mobile computing and networking (MobiCom’97).

  20. Hoppe, H. (1996). Progressive meshes. In ACM SIGGRAPH (pp. 99–108).

  21. Hu, C.-L. & Chen, M.-S. (2002). Dynamic data broadcasting with traffic awareness. In Proceedings of the 22nd IEEE international conference on distributed computing systems.

  22. Huang, J.-L. & Chen, M.-S. (2004). Dependent data broadcasting for unordered queries in a multiple channel mobile environment. IEEE Transactions on Knowledge and Data Engineering, 16(6), 1143–1156.

    Article  Google Scholar 

  23. Huang, J.-L., Chen, M.-S. & Hung, H.-P. (2004). A QoS-aware transcoding proxy using on-demand data broadcasting. In Proceedings of IEEE INFOCOM.

  24. Imielinski, T., Viswanathan, S. & Badrinath, B. R. (1994). Energy efficient indexing on air. In Proceedings of the 1994 ACM international conference on management of data (pp. 25–36).

  25. Imielinski, T., Viswanathan, S. & Badrinath, B. R. (1997). Data on air: Organization and access. IEEE Transactions on Knowledge and Data Engineering, 9(3), 353–372.

    Article  Google Scholar 

  26. Jay, G. T. & Smith, D. R. (2008). Applying similarity metrics to 3D acquisition in structured-light systems. In IEEE international conference on pattern recognition (ICPR) (pp. 1–4).

  27. Jiang, S. & Vaidya, N. H. (1999). Scheduling data broadcast to “impatient” users. In Proceedings of the ACM international workshop on data engineering for wireless and mobile access (MobiDE99) (pp. 52–59).

  28. Jin, G. & Mellor-Crummey, J. (2005). SFCGen: A framework for efficient generation of multi-dimensional space-filling curves by recursion. ACM Transactions on Mathematical Software, 31(1), 120–148.

    Article  MathSciNet  MATH  Google Scholar 

  29. Jay Kim, C.-C. Peng, J. & Kim, C.-S. (2005). Technologies for 3D mesh compression: A survey. Journal of Visual Communication and Image, 16, 688–733.

    Article  Google Scholar 

  30. Lee, W.-C., Hu, Q. & Lee, D.L. (1999). A study on channel allocation for data dissemination in mobile computing environments. ACM/Baltzer Mobile Networks and Applications, Special Issue on Resource Management in Wireless Systems, 4(2), 117–129.

    Article  Google Scholar 

  31. Matusik, W. & Pfister H. (2004) 3D TV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Transactions on Graphics, 23(3), 814–824.

    Article  Google Scholar 

  32. Nanopoulos, A., Katsaros, D. & Manolopouslos, Y. (2001). Effective prediction of web-user accesses: A data mining approach. In Proceedings on WEBKDD workshop.

  33. Norkin, A., Bici, M. O. & Akar, G. B. (2007). Multiple description coding of 3-D geometry with forward error correction codes. In Proceedings of 3DTV conference.

  34. Nurminen, A. (2006). A platform for mobile 3D map navigation development. In ACM Proceedings of the 8th conference on human-computer interaction with mobile devices and services (MobileHCI).

  35. Olaf, S. W. S. & von Ramm, T. (1990). Real time volumetric ultrasound imaging system. Journal of Digital Imaging, 3(4), 261–266.

    Article  Google Scholar 

  36. Pajarola, R. & Rossignac, J. (2000). Squeeze: Fast and progressive decompression of triangle meshes. In Proceedings of CGI (pp. 173–182).

  37. Prabhu, N. & Kumar, V. (2005). Data scheduling for multi-item and transactional requests in on-demand broadcast. In Proceedings of IEEE international conference on mobile data management.

  38. Rossignac, J. (1999). Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics, 5(1), 47–61.

    Article  Google Scholar 

  39. Sagan, H. (1994). Space-filling curves. Berlin: Springer.

    Book  MATH  Google Scholar 

  40. Samet, H. (1989). The design and analysis of spatial data structures. Boston: Addison-Wesley.

    Google Scholar 

  41. Sanchez, V. (2012). Joint source/channel coding for prioritized wireless transmission of multiple 3D regions of interest in 3D medical imaging data. IEEE Transactions on Biomedical Engineering, 60(2), 397–405.

    Article  Google Scholar 

  42. Stathatos, K., Roussopoulos, N. & Baras, J. S. (1997). Adaptive data broadcast in hybrid networks. In Proceedings of the 23rd international conference on very large data bases.

  43. Tian, D. & AlRegib, G. (2008). Batex3: Bit allocation for progressive transmission of textured 3-D models. IEEE Transactions on Circuits and Systems for Video Technology, 18(1), 23–35.

    Article  Google Scholar 

  44. Sanchez, V. & Nasiopoulos, P. (2011). Compression of 3D medical images for wireless transmission. In IEEE Communications Society (ComSoc), 6(7), 17–21.

    Google Scholar 

  45. Xu, J., Lee, D. L. & Li, B. (2003). On bandwidth allocation for data dissemination in cellular mobile networks. ACM/Kluwer Journal of Wireless Networks (WINET). Special Issue on Advances in Mobile and Wireless, 9(2), 103–116.

    Article  MATH  Google Scholar 

  46. Xu, J., Tang, X. & Lee, W.-C. (2006). Time-critical on-demand data broadcast: Algorithms, analysis, and performance evaluation. IEEE Transactions on Parallel and Distributed Systems, 17(1), 3–4.

    Google Scholar 

Download references

Acknowledgments

The work was supported in part by the National Science Council of Taiwan, ROC, under Contracts NSC101-2221-E-025-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hua Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, CH. On efficient 3D data dissemination. Wireless Netw 19, 1901–1914 (2013). https://doi.org/10.1007/s11276-013-0579-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0579-8

Keywords

Navigation