[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Relay-volunteered multi-rate cooperative MAC protocol for IEEE 802.11 WLANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In IEEE 802.11, the rate of a station (STA) is dynamically determined by link adaptation. Low-rate STAs tend to hog more channel time than high-rate STAs due to fair characteristics of carrier sense multiple access/collision avoidance, leading to overall throughput degradation. It can be improved by limiting the transmission opportunities of low-rate STAs by backoff parameters. This, however, may cause unfair transmission opportunities to low-rate STAs. In an attempt to increase overall throughput by volunteer high-rate relay STAs while maintaining fairness, we propose a new cooperative medium access control (MAC) protocol, relay-volunteered multi-rate cooperative MAC (RM-CMAC) based on ready to send/clear to send in multi-rate IEEE 802.11. In the RM-CMAC protocol, we show that the effect of hogging channel time by low-rate STAs can be remedied by controlling the initial backoff window size of low-rate STAs and the reduced transmission opportunity of low-rate STAs can be compensated by the help of volunteer high-rate relay STAs. We analyze the performance of RM-CMAC, i.e., throughput and MAC delay, by a multi-rate embedded Markov chain model. We demonstrate that our analysis is accurate and the RM-CMAC protocol enhances the network throughput and MAC delay while maintaining the fairness of low-rate STAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. IEEE 802.11a/g/n can also be analyzed with our model and framework.

References

  1. IEEE 802.11 (2007). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. New York: IEEE Societies.

  2. Gast, M. S. (2002). 802.11 wireless networks: The definitive guide. Sebastopol, CA: OReilly& Associates.

    Google Scholar 

  3. Heusse, M., Rousseau, F., Sabbatel, G. B., Duda, A. (2003). Performance anomaly of 802.11b. In Proceedings of IEEE INFOCOM’2003, San Francisco, California, USA.

  4. Yang, D.-Y., Lee, T.-J., Jang, K., Chang, J.-B., Choi, S. (2006). Performance enhancement of multirate IEEE 802.11 WLANs with geographically scattered stations. IEEE Transactions on Mobile Computing, 5 (7), 906–919.

    Article  Google Scholar 

  5. Kim, H., Yun, S., Kang, I., Bahk, S. (2005). Resolving 802.11 performance anomalies through QoS differentiation. IEEE Communications Letters, 9(7), 655–657.

    Article  Google Scholar 

  6. Xiao, Y. (2003). Backoff-based priority schemes for IEEE 802.11. In Proceedings of IEEE ICC’2003, Anchorage, Alaska, USA.

  7. Holland, G., Vaidya, N., Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. In Proceedings of ACM MOBICOM’2001, Rome, Italy.

  8. Sadeghi, B., Kanodia, V., Sabharwal, A., Knightly, E. (2002). Opportunistic media access for multirate ad hoc networks. In Proceedings of ACM MOBICOM’2002, Atlanta, Georgia, USA.

  9. Medepalli, K., Tobagi, F. A. (2006). On optimization of CSMA/CA based wireless LANs: Part I - impact of exponential backoff. In Proceedings of IEEE ICC’2006, Istanbul, Turkey.

  10. Haratcherev, I. (2006). Application-oriented link adaptation for IEEE 802.11. Ph.D Dissertation, Delft University of Technology.

  11. Liu, P., Tao, Z., Lin, Z., Erkip, E., Panwar, S. (2006). Cooperative wireless communications : A cross-layer approach. IEEE Wireless Communications Magazines, 13(4), 84–92.

    Article  Google Scholar 

  12. Nosratinia, A., Hunter, T. E., Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  13. Liu, P., Tao, Z., Narayanan, S., Korakis, T., Panwar, S. S. (2007). CoopMAC: A cooperative MAC for wireless LANs. IEEE Journal on Selected Areas in Communications, 25(2), 340–354.

    Article  Google Scholar 

  14. Shankar N. S., Chou, C.-T., Ghosh, M. (2005). Cooperative communication MAC (CMAC)—A new MAC protocol for next generation wireless LANs. In Proceedins of IEEE WiCOM’2005, Maui, Hawaii, USA.

  15. Liu, Y., Liu, K., Zeng, F. (2011). A relay-contention-free cooperative MAC protocol for wireless networks. In Proceedings of IEEE CCNC’2011, Las Vegas, Nevada, USA.

  16. Kim, J.-S., Lee, T.-J. (2009). Performance enhancement of IEEE 802.11b WLANs using cooperative MAC protocol. Springer-Lecture Notes in Computer Science, 5593, 335–344.

    Article  Google Scholar 

  17. Bianchi, G. (2002). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  MathSciNet  Google Scholar 

  18. Yun, L., Ke-Ping, L., Wei-Liang, Z., Chong-Gang, W. (2005). Analyzing the channel access delay of IEEE 802.11 DCF. In Proceedings of IEEE GLOBECOM’2005, Saint Louis.

  19. Chatzimisios, P., Boucouvalas, A. C., Vitsas, V. (2003). Packet delay analysis of IEEE 802.11 MAC protocol. Electronics Lettes, 39(18), 1358–1359.

    Article  Google Scholar 

  20. Park, E.-C., Kim, D.-Y., Choi, C.-H., So, J. (2007). Improving quality of service and assuring fairness in WLAN access networks. IEEE Transactions on Mobile Computing, 6(4), 337–350.

    Article  Google Scholar 

  21. Kuo, Y.-L., Lai, K.-W., Lin, F.Y.-S., Wen, Y.-F., Wu, E.H.-K., Chen, G.-H. (2009). Multirate throughput optimization with fairness constraints in wireless local area networks. IEEE Transactions on Vehicular Technology, 5(5), 2417–2425.

    Article  Google Scholar 

  22. Joshi, T., Mukherjee, A., Yoo, Y., Agrawal, D.P. (2008). Airtime fairness for IEEE 802.11 multirate networks. IEEE Transactions on Mobile Computing, 7(4), 513–527.

    Article  Google Scholar 

  23. Wu, X. (2004). Simulate 802.11b channel within NS2. Technical Report. National University of Singapore. http://cir.nus.edu.sg/reactivetcp/report/80211ChannelinNS2_new.pdf.Accessed10Jan.2012.

Download references

Acknowledgments

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2011-0018397), and the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2011-(C1090-1111-0005)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JS., Oh, CY. & Lee, TJ. Relay-volunteered multi-rate cooperative MAC protocol for IEEE 802.11 WLANs. Wireless Netw 19, 1945–1960 (2013). https://doi.org/10.1007/s11276-013-0576-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0576-y

keywords

Navigation