Abstract
The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.
Graphical abstract
Similar content being viewed by others
Data availability
No datasets were generated or analysed during the current study.
References
Abdi SAH, Alzahrani A, Asad M, Alquraini A, Alghamdi AI, Sayed SF (2021) Molecular docking and dynamics simulation to screen interactive potency and stability of fungicide tebuconazole with thyroid and sex hormone-binding globulin: implications of endocrine and reproductive interruptions. J Appl Toxicol 41(10):1649–1659. https://doi.org/10.1002/jat.4153
Abuley IK, Lynott JS, Hansen JG, Cooke DE, Lees AK (2023) The EU43 genotype of Phytophthora infestans displays resistance to mandipropamid. Plant Pathol 72(7):1305–1313. https://doi.org/10.1111/ppa.13737
Agosteo GE, Raudino F, Cacciola SO (2000) Resistance of Phytophthora capsici to metalaxyl in plastic-house capsicum crops in southern Italy. EPPO Bull 30(2):257–261. https://doi.org/10.1111/j.1365-2338.2000.tb00891
Arora RK, Sharma S, Singh BP (2014) Late blight disease of potato and its management. Potato J. 41(1)
Ayoubi N, Zafari D, Mirabolfathy M (2014) Evaluation of β-1, 3-glucanase and β-1, 4-glucanase enzymes production in some Trichoderma species. Arch Phytopathol Plant Prot 47(16):1929–1941. https://doi.org/10.1080/03235408.2013.862457
Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58(7):649–662. https://doi.org/10.1002/ps.520
Batuman O, Ritenour M, Vicent A, Li H, Hyun JW, Catara V, Ma H, Cano LM (2020) Diseases caused by fungi and oomycetes. In: Talon M, Caruso M, Gmitter FG (eds) The Genus Citrus, 1st edn. Elsevier, Amsterdam, pp 349–369. https://doi.org/10.1016/b978-0-12-812163-4.00017-6
Bhat RG, McBlain BA, Schmitthenner AF (1993) The inheritance of resistance to metalaxyl and to fluorophenylalanine in matings of homothallic Phytophthora sojae. Mycol Res 97(7):865–870. https://doi.org/10.1016/S0953-7562(09)81164-7
Bi Y, Chen L, Cai M, Zhu S, Pang Z, Liu X (2014) Two non-target recessive genes confer resistance to the anti-oomycete microtubule inhibitor zoxamide in Phytophthora capsici. PLoS ONE 9(2):e89336. https://doi.org/10.1371/journal.pone.0089336
Bittner R, Mila A (2016) Production of Phytophthora nicotianae isolates resistant to oxathiapiprolin. Phytopathology 106(12):76
Blum M, Boehler M, Randall EVA, Young V, Csukai M, Kraus S, Moulin F, Scalliet G, Avrova AO, Whisson SC, Fonne-Pfister R (2010a) Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen. Phytophthora Infestans Mol Plant Pathol 11(2):227–243. https://doi.org/10.1111/j.1364-3703.2009.00604.x
Blum M, Waldner M, Gisi U (2010b) A single point mutation in the novel PvCesA3 gene confers resistance to the carboxylic acid amide fungicide mandipropamid in Plasmopara viticola. Fungal Genet Biol 47(6):499–510. https://doi.org/10.1016/j.fgb.2010.02.009
Blum M, Waldner M, Olaya G, Cohen Y, Gisi U, Sierotzki H (2011) Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis. Pest Manag Sci 67(10):1211–1214. https://doi.org/10.1002/ps.2238
Blum M, Gamper HA, Waldner M, Sierotzki H, Gisi U (2012) The cellulose synthase 3 (CesA3) gene of oomycetes: structure, phylogeny, and influence on sensitivity to carboxylic acid amide (CAA) fungicides. Fungal Biol 116(4):529–542. https://doi.org/10.1016/j.funbio.2012.02.003
Bowers JH, Mitchell DJ (1990) Effect of soil-water matric potential and periodic flooding on mortality of pepper caused by Phytophthora capsici. Phytopathology 80(12):1447–1450. https://doi.org/10.1094/Phyto-80-1447
Cahill DM, Rookes JE, Wilson BA, Gibson L, McDougall KL (2008) Phytophthora cinnamomi and australia’s biodiversity: impacts, predictions and progress towards control. Aust J Bot 56(4):279–310. https://doi.org/10.1071/BT07159
Cai M, Miao J, Song X, Lin D, Bi Y, Chen L, Liu X, Tyler BM (2016) C239S mutation in the β-tubulin of Phytophthora sojae confers resistance to zoxamide. Front Microbiol 7:762. https://doi.org/10.3389/fmicb.2016.00762
Cai M, Li T, Lu X, Chen L, Wang Q, Liu X (2021a) Multiple mutations in the predicted transmembrane domains of the cellulose synthase 3 (CesA3) of Phytophthora capsici can confer semi-dominant resistance to carboxylic acid amide fungicides. Int J Biol Macromol 193:2343–2351. https://doi.org/10.1016/j.ijbiomac.2021.11.066
Cai M, Zhang C, Wang W, Peng Q, Song X, Tyler BM, Liu X (2021b) Stepwise accumulation of mutations in CesA3 in Phytophthora sojae results in increasing resistance to CAA fungicides. Evol Appl 14(4):996–1008. https://doi.org/10.1111/eva.13176
Castillo-Reyes F, Clemente-Constantino JA, Gallegos-Morales G, RodrÃguez-Herrera R, Noà C (2015) In vitro antifungal activity of polyphenols-rich plant extracts against Phytophthora cinnamomi Rands. Afr J Agric Res 10(50):4554–4560. https://doi.org/10.5897/AJAR2013.8072
Céspedes MC, Cárdenas ME, Vargas AM, Rojas A, Morales JG, Jiménez P, Bernal AJ, Restrepo S (2013) Physiological and molecular characterization of Phytophthora infestans isolates from the Central Colombian Andean Region. Rev Iberoam Micol 30(2):81–87. https://doi.org/10.1016/j.riam.2012.09.005
Chabane K, Leroux P, Bompeix G (1993) Selection and characterization of Phytophthora parasitica mutants with ultraviolet-induced resistance to dimethomorph or metalaxyl. Pestic Sci 39(4):325–329. https://doi.org/10.1002/ps.2780390413
Chechi A, Stahlecker J, Dowling ME, Schnabel G (2019) Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pestic Biochem Phys 158:18–24. https://doi.org/10.1016/j.pestbp.2019.04.002
Chen L, Zhu S, Lu X, Pang Z, Cai M, Liu X (2012) Assessing the risk that Phytophthora melonis can develop a point mutation (V1109L) in CesA3 conferring resistance to carboxylic acid amide fungicides. PLoS ONE 7(7):e42069. https://doi.org/10.1371/journal.pone.0042069
Chen F, Qi Y, Jiang B, Cao S, Liu X, Gao Z (2023) Metalaxyl-resistant mutant strains of Phytophthora boehmeriae are as aggressive and fit as their metalaxyl-sensitive wild-type parents. Trop Plant Pathol 48(2):128–138. https://doi.org/10.1007/s40858-022-00548-3
Childers R, Danies G, Myers K, Fei Z, Small IM, Fry WE (2015) Acquired resistance to mefenoxam in sensitive isolates of Phytophthora infestans. Phytopathology 105(3):342–349. https://doi.org/10.1094/PHYTO-05-14-0148-R
Cohen Y (1984) Cross-resistance to four systemic fungicides in metalaxyl-resistant strains of Phytophthora infestans and Pseudoperonospora cubensis. Plant Dis 68:137–139
Cohen MF, Yamamoto E, Condeso E, Anacker BL, Rank N, Mazzola M (2008) Microbial-and isothiocyanate-mediated control of Phytophthora and Pythium species. In: Frankel SJ, Kliejunas JT, Palmieri KM (eds) tech. coords. 2008. Proceedings of the sudden oak death third science symposium. Gen. Tech. Rep. PSW-GTR-214, vol 214. US Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, pp 337–340
Cohen Y, Rubin AE, Galperin M (2018) Oxathiapiprolin-based fungicides provide enhanced control of tomato late blight induced by mefenoxam-insensitive Phytophthora infestans. PLoS ONE 13(9):e0204523. https://doi.org/10.1371/journal.pone.0204523
Corkley I, Fraaije B, Hawkins N (2022) Fungicide resistance management: maximizing the effective life of plant protection products. Plant Pathol 71(1):150–169. https://doi.org/10.1111/ppa.13467
Cortaga CQ, Cordez BWP, Dacones LS, Balendres MAO, Dela Cueva FM (2023) Mutations associated with fungicide resistance in Colletotrichum species: a review. Phytoparasitica 51(3):569–592. https://doi.org/10.1007/s12600-023-01063-0
Davidse LC (1990) Biochemical basis of resistance to phenylamide fungicides. In: Managing resistance to agrochemicals, vol 421. American Chemical Society, pp 215–223
Davidse LC, Looijen D, Turkensteen LJ, Van der Wal D (1981) Occurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato fields, Neth. J Plant Pathol 87:65–68. https://doi.org/10.1007/BF01976658
Davidse LC, Gerritsma OC, Velthuis GC (1984) A differential basis of antifungal activity of acylalanine fungicides and structurally related chloroacetanilide herbicides in Phytophthora megasperma f. sp. medicaginis. Pestic Biochem Phys 21(3):301–308. https://doi.org/10.1016/0048-3575(84)90098-1
De Vrieze M, Germanier F, Vuille N, Weisskopf L (2018) Combining different potato-associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Front Microbiol 9:2573. https://doi.org/10.3389/fmicb.2018.02573
Deahl KL, Inglis DA, DeMuth SP (1993) Testing for resistance to metalaxyl in Phytophthora infestans isolates from northwestern Washington. Am Potato J 70(11):779–795. https://doi.org/10.1007/BF02849105
Dehne HW, Deising HB, Gisi U, Kuck KH, Russell PE, Lyr H (2010) Modern fungicides and antifungal compounds VI. 16th International Reinhardsbrunn Symposium, Friedrichroda, Germany, April 25–29
Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci 104(39):15572–15577. https://doi.org/10.1073/pnas.0706569104
Diriwächter G, Sozzi D, Ney C, Staub T (1987) Cross-resistance in Phytophthora infestans and Plasmopara viticola against different phenylamides and unrelated fungicides. Crop Prot 6(4):250–255. https://doi.org/10.1016/0261-2194(87)90046-9
Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41(1):501–538. https://doi.org/10.1146/annurev.phyto.41.052002.095606
Ehiobu J, Idamokoro E, Afolayan A (2022) Biofungicides for Improvement of Potato (Solanum tuberosum L.) Production. Scientifica. https://doi.org/10.1155/2022/1405900
Elansky SN, Apryshko VP, Milyutina DI, Kozlovsky BE (2007) Resistance of Russian strains of Phytophthora infestans to fungicides metalaxyl and dimethomorph. Moscow Univ Biol Sci Bull 62:11–14. https://doi.org/10.3103/S0096392507010038
Elliott M, Shamoun SF, Sumampong G (2015) Effects of systemic and contact fungicides on life stages and symptom expression of Phytophthora ramorum in vitro and in planta. Crop Prot 67:136–144. https://doi.org/10.1016/j.cropro.2014.10.008
Fabritius AL, Shattock RC, Judelson HS (1997) Genetic analysis of metalaxyl insensitivity loci in Phytophthora infestans using linked DNA markers. Phytopathology 87(10):1034–1040. https://doi.org/10.1094/PHYTO.1997.87.10.1034
Fernández-Ortuño D, Torés JA, De Vicente A, Pérez-García A (2008) Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. Int Microbiol 11(1):1. https://doi.org/10.2436/20.1501.01.38
FRAC (2023) Background information on phenylamides. https://www.frac.info/frac-teams/expert-fora/phenylamides/information. Accessed 30 Dec 2023
FRAC (2024) Minutes of the FRAC OSBPI Working Group Meeting. https://www.frac.info/docs/default-source/working-groups/osbpi-wg/minutes-of-the-2024-osbpi-wg-meeting-recommendations-for-2024---7-jan-24.pdf. Accessed 16 July 2024
Frimpong BN, Ampadu SO, Oppong A, Nunoo I, Brobbey L (2021) Phytophthora diseases prevalence, its effects and controls in Ghana. Agro-economic risks of Phytophthora and an effective biocontrol approach. https://doi.org/10.5772/intechopen.99130.
Fugelstad J, Bouzenzana J, Djerbi S, Guerriero G, Ezcurra I, Teeri TT, Arvestad L, Bulone V (2009) Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity. Fungal Genet Biol 46(10):759–767. https://doi.org/10.1016/j.fgb.2009.07.001
Gao X, Hu S, Liu Z, Zhu H, Yang J, Han Q, Fu Y, Miao J, Gu B, Liu X (2022) Analysis of resistance risk and resistance-related point mutations in Cyt b of QioI fungicide ametoctradin in Phytophthora litchii. Pest Manag Sci 78(7):2921–2930. https://doi.org/10.1002/ps.6916
Gao X, Yuan K, Li X, Liao S, Peng Q, Miao J, Liu X (2023) Resistance risk and resistance-related point mutations in target protein cyt b of the quinone inside inhibitor amisulbrom in Phytophthora litchii. J Agric Food Chem 71(17):6552–6560. https://doi.org/10.1021/acs.jafc.2c08860
Gisi U, Cohen Y (1996) Resistance to phenylamide fungicides: a case study with Phytophthora infestans involving mating type and race structure. Annual Review of Phytopathology 34: 549–572. Annu Rev Phytopathol 34:549–572. https://doi.org/10.1146/annurev.phyto.34.1.549
Gisi U, Sierotzki H (2015) Oomycete fungicides: phenylamides, quinone outside inhibitors, and carboxylic acid amides. In: Ishii H, Hollomon D (eds) Fungicide resistance in plant pathogens. Springer, Tokyo, pp 145–174. https://doi.org/10.1007/978-4-431-55642-8_10
Gisi U, Sierotzki H, Cook A, McCaffery A (2002) Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag Sci 58(9):859–867. https://doi.org/10.1002/ps.565
Goodwin SB (1997) The population genetics of Phytophthora. Phytopathology 87(4):462–473. https://doi.org/10.1094/PHYTO.1997.87.4.462
Gossen BD, Carisse O, Kawchuk LM, Van Der Heyden H, McDonald MR (2014) Recent changes in fungicide use and the fungicide insensitivity of plant pathogens in Canada. Can J Plant Pathol 36(3):327–340. https://doi.org/10.1080/07060661.2014.925506
Gotoh K, Akino S, Maeda A, Kondo N, Naito S, Kato M, Ogoshi A (2005) Characterization of some Asian isolates of Phytophthora infestans. Plant Pathol 54(6):733–739. https://doi.org/10.1111/j.1365-3059.2005.01286.x
Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J, Williams A, Wawra S, Whisson SC, Birch PR, Bulone V, Van West P (2008) Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20(3):720–738. https://doi.org/10.1105/tpc.107.052043
Grünwald NJ, Goss EM, Press CM (2008) Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol Plant Pathol 9(6):729–740. https://doi.org/10.1111/j.1364-3703.2008.00500.x
Hanada RE, Pomella AW, Soberanis W, Loguercio LL, Pereira JO (2009) Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biocontrol 50(2):143–149. https://doi.org/10.1016/j.biocontrol.2009.04.005
Hao W, Gray MA, Förster H, Adaskaveg JE (2019) Evaluation of new Oomycota fungicides for management of Phytophthora root rot of citrus in California. Plant Dis 103(4):619–628. https://doi.org/10.1094/PDIS-07-18-1152-RE
Hardham AR, Blackman LM (2018) Phytophthora cinnamomi. Plant Pathol 19(2):260–285. https://doi.org/10.1111/mpp.12568
Hari A, Echchgadda G, Darkaoui FA, Taarji N, Sahri N, Sobeh M, Ezrari S, Laasli SE, Benjelloun M, Lahlali R (2024) Chemical composition, antioxidant properties, and antifungal activity of wild Origanum elongatum extracts against Phytophthora infestans. Front Plant Sci 15:1278538. https://doi.org/10.3389/fpls.2024.1278538
Hawkins NJ, Fraaije BA (2018) Fitness penalties in the evolution of fungicide resistance. Ann Rev Phytopathol 56:339–360. https://doi.org/10.1146/annurev-phyto-080417-050012
Hieno A, Li M, Afandi A, Otsubo K, Suga H, Kageyama K (2020) Detection of the genus Phytophthora and the species Phytophthora nicotianae by LAMP with a QProbe. Plant Dis 104(9):2469–2480. https://doi.org/10.1094/PDIS-12-19-2523-RE
Hu MJ, Grabke A, Dowling ME, Holstein HJ, Schnabel G (2015) Resistance in Colletotrichum siamense from peach and blueberry to thiophanate-methyl and azoxystrobin. Plant Dis 99(6):806–814. https://doi.org/10.1094/PDIS-10-14-1077-RE
Islam MH, Shanta SS, Hossain MI, Hossain MA, Hossain MM, Rahaman EHMS, Al Mahmud A, Akhond MAY, Sullivan L, Cooke DEL, Kessel GJT, Cooke DEL (2023) Phenotypic and Genotypic Analysis of the Population of Phytophthora infestans in Bangladesh Between 2014 and 2019. Potato Res 66(1):255–273. https://doi.org/10.1007/s11540-022-09581-w
Ivanov AA, Ukladov EO, Golubeva TS (2021) Phytophthora infestans: an overview of methods and attempts to combat late blight. J Fungi 7(12):1071. https://doi.org/10.3390/jof7121071
Jaimasit P, Prakob W (2010) Characterization of Phytophthora infestans population in potato crops from Chiang Mai and Tak Provinces. J Agric Technol 6(1):117–125
Jørgensen LN, Hovmøller MS, Hansen JG, Lassen P, Clark B, Bayles R, Rodemann B, Flath K, Jahn M, Goral T, Czembor J, Cheyron P, Maumené C, Vallavieille-Pope C, Ban R, Nielsen GC, Berg G (2014) IPM strategies and their dilemmas including an introduction to www.eurowheat.org. J Integr Agric 13(2):265–281. https://doi.org/10.1016/S2095-3119(13)60646-2
Joseph MC, Coffey MD (1984) Development of laboratory resistance to metalaxyl in Phytophthora citricola. Phytopathology 74(12):1411–1414
Judelson HS, Roberts S (1999) Multiple loci determining insensitivity to phenylamide fungicides in Phytophthora infestans. Phytopathology 89(9):754–760. https://doi.org/10.1094/phyto.1999.89.9.754
Judelson HS, Senthil G (2006) Investigating the role of ABC transporters in multifungicide insensitivity in Phytophthora infestans. Mol Plant Pathol 7(1):17–29. https://doi.org/10.1111/j.1364-3703.2004.00256.x-i1
Jung T, Pérez-Sierra A, Durán A, Jung MH, Balci Y, Scanu B (2018) Canker and decline diseases caused by soil-and airborne Phytophthora species in forests and woodlands. Persoonia 40(1):182–220. https://doi.org/10.3767/persoonia.2018.40.08
Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, Roy SG, Schena L, Zambounis A, Panabières F, Cahill D, Ruocco M, Figueiredo A, Chen XR, Hulvey J, Stam R, Lamour K, Gijzen M, Tyler BM, Grünwald NJ, Mukhtar MS, Tomé DF, Tör M, Van Den Ackerveken G, McDowell J, Daayf F, Fry WE, Lindqvist-Kreuze H, Meijer HJ, Petre B, Ristaino J, Yoshida K, Birch PR, Govers F (2015) The Top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16(4):413–434. https://doi.org/10.1111/mpp.12190
Kaur A, Doyle D, Cooke DEL, Mullins E, Kildea S (2024) First report of the Phytophthora infestans EU_43_A1 clonal lineage and associated PiCesA3 mutation G1105S in Ireland. New Dis Rep 49:e12272. https://doi.org/10.1002/ndr2.12272
Khan J, Ooka JJ, Miller SA, Madden LV, Hoitink HAJ (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88(3):280–286. https://doi.org/10.1094/PDIS.2004.88.3.280
Kongtragoul P, Ishikawa K, Ishii H (2021) Metalaxyl resistance of Phytophthora palmivora causing durian diseases in Thailand. Horticulturae 7(10):375. https://doi.org/10.3390/horticulturae7100375
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA (2022) Biological control of plant pathogens: a global perspective. Microorganisms 10(3):596. https://doi.org/10.3390/microorganisms10030596
Lalaymia I, Naveau F, Arguelles Arias A, Ongena M, Picaud T, Declerck S, Calonne-Salmon M (2022) Screening and efficacy evaluation of antagonistic fungi against Phytophthora infestans and combination with arbuscular mycorrhizal fungi for biocontrol of late blight in potato. Front Agron 4:948309. https://doi.org/10.3389/fagro.2022.948309
Leesutthiphonchai W, Vu AL, Ah-Fong AM, Judelson HS (2018) How does Phytophthora infestans evade control efforts? Modern insight into the late blight disease. Phytopathol 108(8):916–924. https://doi.org/10.1094/PHYTO-04-18-0130-IA
Leroux P, Gredt M (1981) Ph6nomenes de r6sistance aux fongicides anti-mildious: quelques r6sultats de laboratoire (Phytophthora cactorum, Phytophthora parasitica, Botrytis cinerea). Phytiatrie-Phytopharmacie 30:273–282
Levesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP, Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S, Fuerstenberg SI, Gachon CM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, Jiang RH, Johnson J, Krajaejun T, Lin H, Meijer HJ, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Yandell M, Tisserat N, Buell CR (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:1–22. https://doi.org/10.1186/gb-2010-11-7-r73
Li X, Li C, Li G, Zhu J, Liu F, Jiang L, Liu X (2021) Detection of a point mutation (G143A) in Cyt b of Corynespora cassiicola that confers pyraclostrobin resistance. Horticulturae 7(6):155. https://doi.org/10.3390/horticulturae7060155
Li C, Liu X, Liu Z, Hu S, Xue Z, Fu Y, Miao J, Liu X (2022) Resistance risk and novel resistance-related point mutations in target protein PiORP1 of fluoxapiprolin in Phytophthora infestans. J Agric Food Chem 70(16):4881–4888. https://doi.org/10.1021/acs.jafc.1c08199
Lin D, Xue Z, Miao J, Huang Z, Liu X (2020) Activity and resistance assessment of a new OSBP inhibitor, R034–1, in Phytophthora capsici and the detection of point mutations in PcORP1 that confer resistance. J Agric Food Chem 68(47):13651–13660. https://doi.org/10.1021/acs.jafc.0c05531
Löffler J, Einsele H, Hebart H, Schumacher U, Hrastnik C, Daum G (2000) Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains. FEMS Microbiol Lett 185(1):59–63. https://doi.org/10.1111/j.1574-6968.2000.tb09040
Lu XH, Zhu SS, Bi Y, Liu XL, Hao JJ (2010) Baseline sensitivity and resistance-risk assessment of Phytophthora capsici to iprovalicarb. Phytopathology 100(11):1162–1168. https://doi.org/10.1094/PHYTO-12-09-0351
Lu X, Zhou D, Chen X, Zhang J, Huang H, Wei L (2017) Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]. Plant Soil 416:53–66. https://doi.org/10.1007/s11104-017-3195-z
Lucas JA, Greer G, Oudemans PV, Coffey MD (1990) Fungicide sensitivity in somatic hybrids of Phytophthora capsici obtained by protoplast fusion. Physiol Mol Plant Pathol 36(2):175–187. https://doi.org/10.1016/0885-5765(90)90105-7
Ma D, Jiang J, He L, Cui K, Mu W, Liu F (2018) Detection and characterization of QoI-resistant Phytophthora capsici causing pepper Phytophthora blight in China. Plant Dis 102(9):1725–1732. https://doi.org/10.1094/PDIS-01-18-0197-RE
Manasfi Y, Cannesan MA, Riah W, Bressan M, Laval K, Driouich A, Virce A, Trinsoutrot-Gattin I (2018) Potential of combined biological control agents to cope with Phytophthora parasitica, a major pathogen of Choisya ternata. Eur J Plant Pathol 152:1011–1025. https://doi.org/10.1007/s10658-018-1495-7
Maridueña-Zavala MG, Freire-Peñaherrera A, Cevallos-Cevallos JM, Peralta EL (2017) GC-MS metabolite profiling of Phytophthora infestans resistant to metalaxyl. Eur J Plant Pathol 149:563–574. https://doi.org/10.1007/s10658-017-1204-y
Marin MV, Seijo TE, Zuchelli E, Peres NA (2022) Detection and characterization of quinone outside inhibitor-resistant Phytophthora cactorum and P. nicotianae causing leather rot in Florida strawberry. Plant Dis 106(4):1203–1208
Marin MV, Baggio JS, Oh Y, Han H, Chandra S, Wang NY, Lee S, Peres NA (2023) Identification of sequence mutations in Phytophthora cactorum genome associated with mefenoxam resistance and development of a molecular assay for the mutant detection in strawberry (F.× ananassa). Sci Rep 13(1):7385. https://doi.org/10.1038/s41598-023-34271-z
Matson ME, Small IM, Fry WE, Judelson HS (2015) Metalaxyl resistance in Phytophthora infestans: assessing role of RPA190 gene and diversity within clonal lineages. Phytopathology 105(12):1594–1600. https://doi.org/10.1094/PHYTO-05-15-0129-R
Mei X, Yang M, Jiang B, Ding X, Deng W, Dong Y, Chen L, Liu X, Zhu S (2015) Proteomic analysis on zoxamide-induced sensitivity changes in Phytophthora cactorum. Pestic Biochem Physiol 123:9–18. https://doi.org/10.1016/j.pestbp.2015.01.012
Meng QX, Cui XL, Bi Y, Wang Q, Hao JJ, Liu XL (2011) Biological and genetic characterization of Phytophthora capsici mutants resistant to flumorph. Plant Pathol 60(5):957–966. https://doi.org/10.1111/j.1365-3059.2011.02454
Meng H, Sun M, Jiang Z, Liu Y, Sun Y, Liu D, Jiang C, Ren M, Yuan G, Yu W, Feng Q, Yang A, Cheng L, Wang Y (2021) Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae. Sci Rep 11(1):809. https://doi.org/10.1038/s41598-020-80280-7
Merrick LF, Burke AB, Chen X, Carter AH (2021) Breeding with major and minor genes: genomic selection for quantitative disease resistance. Front Plant Sci 12:713667. https://doi.org/10.3389/fpls.2021.713667
Miao J, Cai M, Dong X, Liu L, Lin D, Zhang C, Liu X (2016) Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance. Front Microbiol 7:615. https://doi.org/10.3389/fmicb.2016.00615
Miao J, Li C, Liu X, Zhang X, Li G, Xu W, Zhang C, Liu X (2021) Activity and resistance-related point mutations in target protein PcORP1 of fluoxapiprolin in Phytophthora capsici. J Agric Food Chem 69(13):3827–3835. https://doi.org/10.1021/acs.jafc.0c05119
Miao J, Gao X, Tang Y, Dai T, Liu X (2024) Characteristics of famoxadone-resistant mutants of Phytophthora litchii and their effect on lychee fruit quality. Int J Food Microbiol 411:110528. https://doi.org/10.1016/j.ijfoodmicro.2023.110528
Möller K, Dilger M, Habermeyer J, Zinkernagel V, Flier WG, Hausladen H (2009) Population studies on Phytophthora infestans on potatoes and tomatoes in southern Germany. Eur J Plant Pathol 124:659–672. https://doi.org/10.1007/s10658-009-9451
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D (2021) Genomic approaches to identify molecular bases of crop resistance to diseases and to develop future breeding strategies. Int J Mol Sci 22(11):5423. https://doi.org/10.3390/ijms22115423
Mu W, Hu L, Yang M, Wang G, Guo J, Wang A, Miao J, Xi J, Guo W, Liu X, Wang J, Zhang Y, Song J (2022) Q1077h and V1109l mutations in the CesA3 of Phytophthora nicotianae confers resistance to dimethomorph. https://doi.org/10.2139/ssrn.4241446
Ndala R, Mbega E, Ndakidemi P (2019) Different plant extracts against Phytophthora infestans (Mont.) de Bary in tomato in vitro. Am J Plant Sci 10(4):698–708. https://doi.org/10.4236/ajps.2019.104050
Neupane S, Baysal-Gurel F (2022) Comparative performance of fungicides, biofungicides, host-plant defense inducers, and fertilizer in management of phytophthora root rot on boxwood. Hortic Sci 57(8):864–871. https://doi.org/10.21273/HORTSCI16546-22
Nishimura R, Sato K, Lee W, Singh UP, Chang T, Suryaningsih E, Suwonakenee S, Lumyong P, Chamswarng C, Tang W, Shrestha S, Kato M, Fujii N, Akino S, Kondo N, Kobayashi K, Ogoshi A (1999) Distribution of Phytophthora infestans populations in seven asian countries. Jpn J Phytopathol 65:163–170. https://doi.org/10.3186/jjphytopath.65.163
Oelke LM, Bosland PW, Steiner R (2003) Differentiation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum. J Am Soc Hortic Sci 128(2):213–218. https://doi.org/10.21273/JASHS.128.2.0213
Oparaeke AM (2006) Bioefficacy of plant extracts mixture for the production of cowpea flowers against Megalurothrips sjostedti (thripidae). J Plant Sci 1:1–7. https://doi.org/10.3923/jps.2006.1.7
Pang Z, Shao J, Chen L, Lu X, Hu J, Qin Z, Liu X (2013) Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance. PLoS ONE 8(2):e56513. https://doi.org/10.1371/journal.pone.0056513
Pang Z, Chen L, Mu W, Liu L, Liu X (2016) Insights into the adaptive response of the plant-pathogenic oomycete Phytophthora capsici to the fungicide flumorph. Sci Rep 6(1):24103. https://doi.org/10.1038/srep24103
Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312(5779):1491–1495. https://doi.org/10.1126/science.1126551
Parke JL, Redekar NR, Eberhart JL, Funahashi F (2019) Hazard analysis for Phytophthora species in container nurseries: three case studies. Horttechnology 29(6):745–755. https://doi.org/10.21273/HORTTECH04304-19
Parra G, Ristaino JB (2001) Resistance to mefenoxam and metalaxyl among field isolates of phytophthora capsici causing Phytophthora blight of Bell Pepper. Plant Dis 85(10):1069–1075. https://doi.org/10.1094/PDIS.2001.85.10.1069
Pasteris RJ, Hanagan MA, Bisaha JJ, Finkelstein BL, Hoffman LE, Gregory V, Andreassi JL, Sweigard JA, Klyashchitsky BA, Henry YT, Berger RA (2016) Discovery of oxathiapiprolin, a new oomycete fungicide that targets an oxysterol binding protein. Bioinorg Chem 24(3):354–361. https://doi.org/10.1016/j.bmc.2015.07.064
Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28(6):1283–1298. https://doi.org/10.1093/nar/28.6.1283
Peng Q, Wang Z, Fang Y, Wang W, Cheng X, Liu X (2019) Point mutations in the β-tubulin of Phytophthora sojae confer resistance to ethaboxam. Phytopathology 109(12):2096–2106. https://doi.org/10.1094/PHYTO-01-19-0032-R
Pereira D, McDonald BA, Croll D (2020) The genetic architecture of emerging fungicide resistance in populations of a global wheat pathogen. Genome Biol Evol 12(12):2231–2244. https://doi.org/10.1093/gbe/evaa203
Périchon B, Courvalin P, Stratton CW (2019) Antibiotic resistance. In: Schmidt TM (ed) Encyclopedia of microbiology, 4th edn. Academic Press, New York, pp 127–139
Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci 104(39):15566–15571
Peters RD, Sturz AV, Matheson BG, Arsenault WJ, Malone A (2001) Metalaxyl sensitivity of isolates of Phytophthora erythroseptica in Prince Edward Island. Plant Pathol 50(3):302–309. https://doi.org/10.1046/j.1365-3059.2001.00566.x
Peters RD, Sturz AV, Carter MR, Sanderson JB (2005) Crop rotation can confer resistance to potatoes from Phytophthora erythroseptica attack. Can J Plant Sci 85(2):523–528. https://doi.org/10.4141/P04-103
Porter LD, Miller JS, Nolte P, Price WJ (2007) In vitro somatic growth and reproduction of phenylamide-resistant and -sensitive isolates of Phytophthora erythroseptica from infected potato tubers in Idaho. Plant Pathol 56(3):492–499. https://doi.org/10.1111/j.1365-3059.2006.01562.x
Pscheidt JW, Ocamb CM (2022) Diagnosis and management of Phytophthora diseases. Pacific Northwest Plant Disease Management Handbook. https://pnwhandbooks.org/node/383/print
Qin CF, He MH, Chen FP, Zhu W, Yang LN, Wu EJ, Zl G, Shang LP, Zhan J (2016) Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans. Sci Rep 6(1):20483. https://doi.org/10.1038/srep20483
Randall E, Young V, Sierotzki H, Scalliet G, Birch PR, Cooke DE, Csukai M, Whisson SC (2014) Sequence diversity in the large subunit of RNA polymerase I contributes to Mefenoxam insensitivity in Phytophthora infestans. Mol Plant Pathol 15(7):664–676. https://doi.org/10.1111/mpp.12124
Reis A, Ribeiro FHS, Maffia LA, Mizubuti ESG (2005) Sensitivity of Brazilian isolates of Phytophthora infestans to commonly used fungicides in tomato and potato crops. Plant Dis 89(12):1279–1284. https://doi.org/10.1094/PD-89-1279
Riveros BF, Sotomayor R, Rivera V, Secor G, Espinoza B (2003) Resistance of Phytophthora infestans (Montagne) de Bary to metalaxyl in potato crops in Northern Chile. Agric Téc 63(2):117–124. https://doi.org/10.4067/S0365-28072003000200001
Sang MK, Shrestha A, Kim DY, Park K, Pak CH, Kim KD (2013) Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici. Plant Pathol J 29(2):154. https://doi.org/10.5423/PPJ.OA.07.2012.0104
Sapkota S, Burlakoti RR, Punja ZK (2023) Diversity in virulence and metalaxyl-m sensitivity of Phytophthora rubi isolates has implications for raspberry root rot and wilting complex management. Can J Plant Pathol 45(3):263–276. https://doi.org/10.1080/07060661.2023.2175912
Saville A, Graham K, Grünwald NJ, Myers K, Fry WE, Ristaino JB (2015) Fungicide sensitivity of US genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Dis 99(5):659–666. https://doi.org/10.1094/PDIS-05-14-0452-RE
Schwendenmann L, Michalzik B (2021) Impact of Phytophthora agathidicida infection on canopy and forest floor plant nutrient concentrations and fluxes in a kauri-dominated forest. Ecol Evol 11(9):4310–4324. https://doi.org/10.1002/ece3.7326
Scott P, Bader MKF, Burgess T, Hardy G, Williams N (2019) Global biogeography and invasion risk of the plant pathogen genus Phytophthora. Environ Sci Policy 101:175–182. https://doi.org/10.1016/j.envsci.2019.08.020
Shattock RC (1986) Inheritance of metalaxyl resistance in the potato late blight fungus. In: Proceedings Brighton crop protection conference, vol 2. British Crop Protection Council, Thornton Heath, Surrey, pp 555–556
Shattock RC (1988) Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans. Plant Pathol 37(1):4–11. https://doi.org/10.1111/j.1365-3059.1988.tb02188
Shaw DS, Shattock RC (1991) Genetics of Phytophthora infestans: the Mendelian approach. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds) Phytophthora. Cambridge University Press, Cambridge, pp 218–230
Siegenthaler TB, Hansen ZR (2021) Sensitivity of Phytophthora capsici from Tennessee to mefenoxam, fluopicolide, oxathiapiprolin, dimethomorph, mandipropamid, and cyazofamid. Plant Dis 105(10):3000–3007. https://doi.org/10.1094/PDIS-08-20-1805-RE
Somnuek S, Kongtragoul P, Jaenaksorn T (2023) Fungicide resistance of Phytophthora palmivora causing durian diseases in eastern and southern Thailand and the in vitro alternative control by cajeput leaf extracts. Int J Agric Technol 19(2):703–720
Sumardiyono C, Pusposendjojo N, Trisnowati S (1995) Resistance of fungal plants pathogens to fungicides. Indones J Plant Protect 1(1):51–55
Thind TS, Hollomon DW (2018) Thiocarbamate fungicides: reliable tools in resistance management and future outlook. Pest Manag Sci 74(7):1547–1551. https://doi.org/10.1002/ps.4844
Thines M, Choi YJ (2016) Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 106(1):6–18. https://doi.org/10.1094/PHYTO-05-15-0127-RVW
Timmer LW, GarnseyGraham SMJH (2000) Compendium of citrus diseases. The American Phytopathological Society, St. Paul
Tyler BM (2007) Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8(1):1–8. https://doi.org/10.1111/j.1364-3703.2006.00373
Vanlay M, Samnang S, Jung HJ, Choe P, Kang KK, Nou IS (2022) Interspecific and intraspecific hybrid rootstocks to improve horticultural traits and soil-borne disease resistance in tomato. Genes 13(8):1468. https://doi.org/10.3390/genes13081468
Volynchikova E, Kim KD (2022) Biological control of oomycete soilborne diseases caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in solanaceous crops. Mycobiology 50(5):269–293. https://doi.org/10.1080/12298093.2022.2136333
Wang C, Zhang X, Liu T, Li X, Xie M, Chen C (2012) Cross resistance of Phytophthora infestans isolates to metalaxyl and cymoxanil. Chin Potato J 26(2):100–104
Wang W, Liu X, Han T, Li K, Qu Y, Gao Z (2020) Differential potential of Phytophthora capsici resistance mechanisms to the fungicide metalaxyl in peppers. Microorganisms 8(2):278. https://doi.org/10.3390/microorganisms8020278
Wang J, Chen S, Zhou Y, Peng Q, Shi N, Du Y, Chen F (2024) High resistance risk of Phytophthora colocasiae to azoxystrobin in southeastern of China. Pestic Biochem Phys 202:105949. https://doi.org/10.1016/j.pestbp.2024.105949
Widmer TL, Laurent N (2006) Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. Eur J Plant Pathol 115(4):377–388. https://doi.org/10.1007/s10658-006-9024-5
Wu J, Xue Z, Miao J, Zhang F, Gao X, Liu X (2020) Sensitivity of different developmental stages and resistance risk assessment of Phytophthora capsici to fluopicolide in China. Front Microbiol 11:185. https://doi.org/10.3389/fmicb.2020.00185
Yanar Y, Kadioğlu I, Gökçe A, Demirtas I, Gören N, Çam H, Whalon M (2011) In vitro antifungal activities of 26 plant extracts on mycelial growth of Phytophthora infestans (Mont.) de Bary. Afr J Biotechnol 10(14):2625–2629. https://doi.org/10.5897/AJB10.1219
Yang M, Duan S, Mei X, Huang H, Chen W, Liu Y, Gao C, Yang T, Wei W, Liu X, He X, Dong Y, Zhu S (2018) The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci Rep 8(1):6534
Yang LN, He MH, Ouyang HB, Zhu W, Pan ZC, Sui QJ, Shang LP, Zhan J (2019) Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiol 19:1–10. https://doi.org/10.1186/s12866-019-1574-8
Yang LN, Nkurikiyimfura O, Pan ZC, Wang YP, Waheed A, Chen RS, Burdon JJ, Sui Q-J, Zhan J (2021) Plant diversity ameliorates the evolutionary development of fungicide resistance in an agricultural ecosystem. J Appl Ecol 58(11):2566–2578. https://doi.org/10.1111/1365-2664.13978
Yin Y, Miao J, Shao W, Liu X, Zhao Y, Ma Z (2023) Fungicide resistance: progress in understanding mechanism, monitoring, and management. Phytopathol 113(4):707–718. https://doi.org/10.1094/PHYTO-10-22-0370-KD
Yoo H-D, Lee Y-B (2011) Interplay of pharmacogenetic variations in ABCB1 transporters and cytochrome P450 enzymes. Arch Pharm Res 34:1817–1828. https://doi.org/10.1007/s12272-024-01504-2
Yuan SK, Liu XL, Si NG, Dong J, Gu BG, Jiang H (2006) Sensitivity of Phytophthora infestans to flumorph: in vitro determination of baseline sensitivity and the risk of resistance. Plant Pathol 55(2):258–263. https://doi.org/10.1111/j.1365-3059.2006.01338
Zhou Y, Chen L, Hu J, Duan H, Lin D, Liu P, Meng Q, Li B, Si N, Liu C, Liu X (2015) Resistance mechanisms and molecular docking studies of four novel QoI fungicides in Peronophythora litchii. Sci Rep 5(1):17466. https://doi.org/10.1038/srep17466
Ziogas BN, Markoglou AN, Theodosiou DI, Anagnostou A, Boutopoulou S (2006) A high multi-drug resistance to chemically unrelated oomycete fungicides in Phytophthora infestans. Eur J Plant Pathol 115:283–292. https://doi.org/10.1007/s10658-006-9007-6
Funding
No funding.
Author information
Authors and Affiliations
Contributions
Syed Atif Hasan Naqvi and Muhammad Shahbaz: Conceptualization; Formal analysis. Noor Fatima, Amjad Ali, Jaya Seelan Sathiya Seelan, and Muhammad Shahbaz: writing original draft. Muhammad Akram, Muhammad Farhan, Salman Ahmad, Muhammad Ahmad, Rafia Kiran, Jaya Seelan Sathiya Seelan: initial review & editing. Jaya Seelan Sathiya Seelan, Muhammad Shahbaz and Salman Ahmad Critically reviewed, English editing and final validation.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
The current study does not involve the use of animals.
Consent to participate
Not applicable.
Consent to publish
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Naqvi, S.A.H., Farhan, M., Ahmad, M. et al. Deciphering fungicide resistance in Phytophthora: mechanisms, prevalence, and sustainable management approaches. World J Microbiol Biotechnol 40, 302 (2024). https://doi.org/10.1007/s11274-024-04108-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11274-024-04108-6