Abstract
Surfactin, an antibacterial lipopeptide produced by different strains of Bacillus subtilis, is a powerful biosurfactant. It also has multiple biological activities including antiviral, anti-mycoplasma and antiprotozoal activities, in addition to the broad-spectrum antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria and fungi. Surfactin may be one of the promising alternatives to antibiotics. Surfactin’s chemical structure and physicochemical properties are briefly discussed in this mini-review. Surfactin’s antibacterial mechanism is mainly outlined as follows: (1) attacking pathogenic bacteria’s cell membrane, causing cell membrane disintegration or osmotic pressure imbalance; (2) inhibiting pathogenic bacteria’s protein synthesis, preventing cell reproduction; (3) inhibiting pathogenic bacteria’s enzyme activity, affecting normal cell metabolism. This provides basis for the further research and application of surfactin. Finally, the application of surfactin in food and its prospect are summarized in brief.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Abdelli F, Jardak M, Elloumi J, Stien D, Cherif S, Mnif S, Aifa S (2019) Antibacterial, anti-adherent and cytotoxic activities of surfactin (s) from a lipolytic strain Bacillus safensis F4. Biodegradation 30(4):287–300. https://doi.org/10.1007/s10532-018-09865-4
Ai J (2008) A quantitative detection method and application of antimicrobial lipopeptides from Bacillus sp. Fermentation broth. Nanjing Agricultural University, Nanjing
Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494. https://doi.org/10.1016/0006-291x(68)90503-2
Arjes HA, Vo L, Dunn CM, Willis L, DeRosa CA, Fraser CL, Huang KC (2020) Biosurfactant-mediated membrane depolarization maintains viability during oxygen depletion in Bacillus subtilis. Curr Biol 30(6):1011–1022. https://doi.org/10.1016/j.cub.2020.01.073
Assie LK, Deleu M, Arnaud L, Paquot M, Thonart P, Ch G, Haubruge E (2002) Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 67(3):647–655
Bártová V, Bárta J, Jarošová M (2019) Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-019-09887-9
Bie XM, Lu ZX (2006) Isolation and identification of the antimicrobial substance produced by Bacillus subtilis fmbR. Sci Agri Sin 39(11):2327–2334
Blazyk J, Wiegand R, Klein J, Hammer J, Epand RM, Epand RF, Maloy ML, Kari UP (2001) A novel linear amphipathic β-sheet cationic antimicrobial peptide with enhanced selectivity for bacterial lipids. J Biol Chem 276(30):27899–27906. https://doi.org/10.1074/jbc.M102865200
Bonmatin JM, Genest M, Labbé H, Ptak M (1994) Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-nmr, distance geometry, and molecular dynamics. Biopolym Orig Res Biomol. https://doi.org/10.1002/bip.360340716
Bouffioux O, Berquand A, Eeman M, Paquot M, Dufrêne YF, Brasseur R, Deleu M (2007) Molecular organization of surfactin–phospholipid monolayers: effect of phospholipid chain length and polar head. Biochim Biophys Acta (BBA)-Biomembr. https://doi.org/10.1016/j.bbamem.2007.04.015
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098
Buchoux S, Lai-Kee-Him J, Garnier M, Tsan P, Besson F, Brisson A, Dufourc EJ (2008) Surfactin-triggered small vesicle formation of negatively charged membranes: a novel membrane-lysis mechanism. Biophys J 95(8):3840–3849. https://doi.org/10.1529/biophysj.107.128322
Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta (BBA)-Biomembr 1611(1–2):91–97. https://doi.org/10.1016/S0005-2736(03)00029-4
Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84(6):3751–3758. https://doi.org/10.1016/s0006-3495(03)75103-0
Chen XY, Zhao HY, Lu ZX (2021) Research progress in biosynthesis and application of surfactin. J Nanjing Agric Univ 44(6):1024–1034
Chen X, Zhao H, Meng F, Zhou L, Pang X, Lu Z, Lu Y (2022) Ameliorated effects of a lipopeptide surfactin on insulin resistance in vitro and in vivo. Food Sci Nutr. https://doi.org/10.1002/fsn3.2852
Chongsiriwatana NP, Lin JS, Kapoor R, Wetzler M, Rea JA, Didwania MK, Contag CH, Barron AE (2017) Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids. Sci Rep 7(1):1–15. https://doi.org/10.1038/s41598-017-16180-0
Cullis PT, De Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta (BBA)-Biomembr 559(4):399–420. https://doi.org/10.1016/0304-4157(79)90012-1
de Araujo LV, Guimarães CR, da Silva Marquita RL, Santiago VM, de Souza MP, Nitschke M, Freire DMG (2016) Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects. Food Control 63:171–178. https://doi.org/10.1016/j.foodcont.2015.11.036
Dehghan-Noudeh G, Housaindokht M, Bazzaz BSF (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43(3):272–276
Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hbid C, Thonart P, Brasseur R (2003) Interaction of surfactin with membranes: a computational approach. Langmuir 19(8):3377–3385. https://doi.org/10.1021/la026543z
Deleu M, Lorent J, Lins L, Brasseur R, Braun N, El Kirat K, Mingeot-Leclercq MP (2013) Effects of surfactin on membrane models displaying lipid phase separation. Biochim Biophys Acta (BBA)-Biomembr 1828(2):801–815. https://doi.org/10.1016/j.bbamem.2012.11.007
dos Santos Pires AC, de Fátima Ferreira Soares N, de Andrade NJ, da Silva LHM, Camilloto GP, Bernardes PC (2008) Development and evaluation of active packaging for sliced mozzarella preservation. Packag Technol Sci 21(7):375–383. https://doi.org/10.1002/pts.815
Dowhan W, Mileykovskaya E, Bogdanov M (2004) Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta (BBA)-Biomembr 1666(1–2):19–39. https://doi.org/10.1016/j.bbamem.2004.04.010
Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta (BBA)-Gen Subj 1726(1):87–95. https://doi.org/10.1016/j.bbagen.2005.06.015
Ehrenstein G, Lecar H (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10(1):1–34. https://doi.org/10.1017/S0033583500000123
Fan HY, Nazari M, Raval G, Khan Z, Patel H, Heerklotz H (2014) Utilizing zeta potential measurements to study the effective charge, membrane partitioning, and membrane permeation of the lipopeptide surfactin. Biochim Biophys Acta (BBA)-Biomembr 1838(9):2306–2312. https://doi.org/10.1016/j.bbamem.2014.02.018
Francius G, Dufour S, Deleu M, Paquot M, Mingeot-Leclercq MP, Dufrêne YF (2008) Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Biochim Biophys Acta (BBA)-Biomembr 1778(10):2058–2068. https://doi.org/10.1016/j.bbamem.2008.03.023
Gao Z, Zhao X, Yang T, Shang J, Shang L, Mai H, Qi G (2014) Immunomodulation therapy of diabetes by oral administration of a surfactin lipopeptide in NOD mice. Vaccine 32(50):6812–6819. https://doi.org/10.1016/j.vaccine.2014.08.082
Gao L, Han J, Liu H, Qu X, Lu Z, Bie X (2017) Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Ant Van Leeuwenhoek 110(8):1007–1018. https://doi.org/10.1186/s13568-019-0914-2
Grau A, Gomez FJ, Peypoux F, Ortiz A (1999) A study on the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta (BBA)-Biomembr 1418(2):307–319. https://doi.org/10.1016/s0005-2736(99)00039-5
Gueguen Y, Bernard R, Julie F, Paulina S, Delphine DG, Franck V, Philippe B, Evelyne B (2009) Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin. Mol Immunol 46(4):516–522. https://doi.org/10.1016/j.molimm.2008.07.021
Harwood CR, Mouillon JM, Pohl S, Arnau J (2018) Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 42(6):721–738. https://doi.org/10.1093/femsre/fuy028
Heerklotz H, Seelig J (2007) Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J 36(4):305–314. https://doi.org/10.1007/s00249-006-0091-5
Heerklotz H, Tsamaloukas A, Kita-Tokarczyk K, Strunz P, Gutberlet T (2004) Structural, volumetric, and thermodynamic characterization of a micellar sphere-to-rod transition. J Am Chem Soc 126(50):16544–16552. https://doi.org/10.1021/ja045525w
Henkel M, Geissler M, Weggenmann F, Hausmann R (2017) Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production. Biotechnol J 12(7):1600561. https://doi.org/10.1002/biot.201600561
Henry G, Deleu M, Jourdan E, Thonart P, Ongena M (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol 13(11):1824–1837. https://doi.org/10.1111/j.1462-5822.2011.01664.x
Horng YB, Yu YH, Dybus A, Hsiao FSH, Cheng YH (2019) Antibacterial activity of Bacillus species-derived surfactin on Brachyspira hyodysenteriae and Clostridium perfringens. AMB Express 9(1):1–9. https://doi.org/10.1186/s13568-019-0914-2
Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29):8347–8352. https://doi.org/10.1021/bi000946l
Huang XQ (2006) Antimicrobial effect of safety of lipopeptide produced by Bacillus subtilis fmbJ. Nanjing Agric Univ, Nanjing
Huang KC, Lin CM, Tsao HK, Sheng YJ (2009a) The interactions between surfactants and vesicles: dissipative particle dynamics. J Chem Phys 130(24):06B622. https://doi.org/10.1063/1.3155209
Huang X, Gao X, Zheng L, Hao G (2009b) Optimization of sterilization of Salmonella enteritidis in meat by surfactin and iturin using a response surface method. Int J Peptide Res Ther 15(1):61–67. https://doi.org/10.1007/s10989-008-
Huerta-Cantillo J, Navarro-García F (2016) Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investig Discapacidad 5(2):96–115
Hwang YH, Kim MS, Song IB, Park BK, Lim JH, Park SC, Yun HI (2009) Subacute (28 day) toxicity of surfactin C, a lipopeptide produced by Bacillus subtilis, in rats. J Health Sci 55(3):351–355. https://doi.org/10.1248/jhs.55.351
Imai Y (1971) Hypocholesterolemic effect of surfactin, a novel bacterial peptidelipid. J Takeda Res Lab 30(4):728–734
Isa MHM, Shannaq MAHF, Mohamed N, Hassan AR, Al-Shorgani NKN, Hamid AA (2017) Antibacterial activity of surfactin produced by Bacillus subtilis MSH1. Trans Sci Technol 4:402–407
Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. https://doi.org/10.1128/CMR.00056-05
Kell H, Holzwarth JF, Boettcher C, Heenan RK, Vater J (2007) Physicochemical studies of the interaction of the lipoheptapeptide surfactin with lipid bilayers of L-alpha-dimyristoyl phosphatidylcholine. Biophys Chem 128:114–124. https://doi.org/10.1016/j.bpc.2007.03.005
Kim DH, Yu KW, Bae EA, Park HJ, Choi JW (1998) Metabolism of kalopanaxsaponin B and H by human intestinal bacteria and antidiabetic activity of their metabolites. Biol Pharm Bull 21:360–365. https://doi.org/10.1248/bpb.21.360
Kracht MAREN, Rokos H, Özel MUHSIN, Kowall MARTIN, Pauli G, Vater JOACHIM (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52(7):613–619. https://doi.org/10.7164/antibiotics.52.613
Krishnan N, Velramar B, Velu RK (2019) Investigation of antifungal activity of surfactin against mycotoxigenic phytopathogenic fungus Fusarium moniliforme and its impact in seed germination and mycotoxicosis. Pestic Biochem Physiol 155:101–107. https://doi.org/10.1016/j.pestbp.2019.01.010
Ladokhin AS, White SH (2001) ‘Detergent-like’permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta (BBA)-Biomembr 1514(2):253–260. https://doi.org/10.1016/S0005-2736(01)00382-0
Lee MT, Chen FY, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43(12):3590–3599. https://doi.org/10.1021/bi036153r
Lima WG, Parreira AG, Nascimento LA, Leonel CA, Andrade JT, Palumbo JC, Paulo G, Ferreira JMS (2018) Absence of antibacterial, anti-candida, and anti-dengue activities of a surfactin isolated from Bacillus subtilis. J Pharm Negat Results 9(1):27–32. https://doi.org/10.4103/jpnr.JPNR_11_17
Liu J (2009) Study on the interaction between surfactin and biomacromolecules. East China University of Science 2 and Technology, Shanghai
Liu J, Zou A, Mu B (2010) Toluidine blue: aggregation properties and distribution behavior in surfactin micelle solution. Colloid Surf B 75(2):496–500. https://doi.org/10.1016/j.colsurfb.2009.09.025
Liu HM, Sun LJ, Wang YL, Xu DF, Liu Y, Chen H, Tang XS (2012a) Study on antibacterial mechanism of lipopeptide from Bacillus natto against Staphyloccocus aureus. Sci Technol Food Ind 33(11):109–112
Liu HM, Sun LJ, Wang YL, Xu DF, Liu Y, Chen H, Tang XS (2012b) Antibacterial mechanism of lipopeptide from bacillus natto against vibrio parahemolyticus. Food Sci 33(15):201–205. https://doi.org/10.1007/s00253-013-5291-1
Liu J, Li W, Zhu X, Zhao H, Lu Y, Zhang C, Lu Z (2019) Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol 103(11):4565–4574. https://doi.org/10.1007/s00253-019-09808-w
Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35(35):11361–11368. https://doi.org/10.1021/bi960016v
Mei YW, Yang ZY, Yu F, Long XW (2020) Recent progress on fermentation and antibacterial applications of surfactin. China Biotechnol. https://doi.org/10.13523/j.cb.1912023
Mileykovskaya E, Dowhan W (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol. https://doi.org/10.1128/JB.182.4.1172-1175.2000
Nguyen MH, DiPasquale M, Rickeard BW, Doktorova M, Heberle FA, Scott HL, Marquardt D (2019) Peptide-induced lipid flip-flop in asymmetric liposomes measured by small angle neutron scattering. Langmuir 35(36):11735–11744. https://doi.org/10.1021/acs.langmuir.9b01625
Nielsen JE, Bjørnestad VA, Pipich V, Jenssen H, Lund R (2021) Beyond structural models for the mode of action: how natural antimicrobial peptides affect lipid transport. J Colloid Interface Sci 582:793–802
Nitschke M, Araújo LV, Costa SGVAO, Pires RC, Zeraik AE, Fernandes ACLB, Freire DMG, Contiero J (2009) Surfactin reduces the adhesion of food-borne pathogenic bacteria to solid surfaces. Lett Appl Microbiol 49(2):241–247. https://doi.org/10.1111/j.1472-765X.2009.02646
Ongena M, Henry G, Adam A, Jourdan E, Thonart P (2009) Insights into the plant defense mechanisms induced by Bacillus lipopeptides. Mol Plant Microbe Interact 7(1):5
Ostroumova OS, Malev VV, Ilin MG, Schagina LV (2010) Surfactin activity depends on the membrane dipole potential. Langmuir 26(19):15092–15097. https://doi.org/10.1021/la102691y
Otoni CG, Soares NDFF, da Silva WA, Medeiros EAA, Baffa Junior JC (2014) Use of allyl isothiocyanate-containing sachets to reduce Aspergillus flavus sporulation in peanuts. Packag Technol Sci 27(7):549–558. https://doi.org/10.1002/pts.2063
Park G, Nam J, Kim J, Song J, Kim PI, Min HJ, Lee CW (2019) Structure and mechanism of surfactin peptide from Bacillus velezensis antagonistic to fungi plant pathogens. Bull Korean Chem Soc 40(7):704–709. https://doi.org/10.1002/bkcs.11757
Patel H, Huynh Q, Bärlehner D, Heerklotz H (2014) Additive and synergistic membrane permeabilization by antimicrobial (lipo) peptides and detergents. Biophys J 106(10):2115–2125. https://doi.org/10.1016/j.bpj.2014.04.006
Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51(5):553–563. https://doi.org/10.1007/s002530051432
Pinkas D, Fišer R, Kozlik P, Dolejšová T, Hryzáková K, Konopásek I, Mikušová G (2020) Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. Biochim Biophysica Acta (BBA)- Biomembranes 1862(10):183405. https://doi.org/10.1016/j.bbamem.2020.183405
Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31(49):12416–12423. https://doi.org/10.1021/bi00164a017
Sałek K, Euston SR (2019) Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem 85:143–155. https://doi.org/10.1016/j.procbio.2019.06.027
Santos JC, Sousa RC, Otoni CG, Moraes AR, Souza VG, Medeiros EA, Espitia PJP, Soares NF (2018) Nisin and other antimicrobial peptides: production, mechanisms of action, and application in active food packaging. Innov Food Sci Emerg Technol 48:179–194. https://doi.org/10.1016/j.ifset.2018.06.008
Shaligram NS, Singhal RS (2010) Surfactin–a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48(2):119–134
Shan MY, Meng FQ, Zhou LB, Lu FX, Bie XM, Zhao HZ, Lu ZX (2021) Surfactin inhibits the growth of Propionibacterium acnes by destroying the cell wall and membrane. Lett Appl Microbiol 73(6):684–693. https://doi.org/10.1111/lam.13576
Shen HH, Thomas RK, Penfold J, Fragneto G (2010) Destruction and solubilization of supported phospholipid bilayers on silica by the biosurfactant surfactin. Langmuir 26(10):7334–7342. https://doi.org/10.1021/la904212x
Sochacki KA, Barns KJ, Bucki R, Weisshaar JC (2011) Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci 108(16):6347–6348. https://doi.org/10.1073/pnas.1101130108
Sun K (2021) Study on optimization of Bacillus surfactin high-efficiency fermentation medium and tis control effect on rice disease. Yangzhou Univ, Yangzhou
Sun LJ, Wang YL, Liu HM, Xu DF, Nie FH, Zhou ZF, Jie CHEN, Li JR (2012) Hemolytic and mice acute oral toxicity evaluation of a new antimicrobial peptide APNT-6. J Fish China 36(6):974–978
Tao Y (2010) Antifungal mechanism of antimicrobial lipopeptide produced by Bacillus subtilis fmbJ against Rhizopus stolonifera. Nanjing Agri Univ, Nanjing
Tao Y, Bie XM, Lv FX, Zhao HZ, Lu ZX (2011) Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J Microbiol 49(1):146–150. https://doi.org/10.1007/s12275-011-0171-9
Tsan P, Volpon L, Besson F, Lancelin JM (2007) Structure and dynamics of surfactin studied by NMR in micellar media. J Am Chem Soc 129(7):1968–1977. https://doi.org/10.1021/ja066117q
Vanounou S, Parola AH, Fishov I (2003) Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene-labelled phospholipids. Mol Microbiol 49(4):1067–1079. https://doi.org/10.1046/j.1365-2958.2003.03614
Wang QY, Lin QL, Peng K, Qu LL, Ren JY, Cao JZ (2017) Identification of antifungal lipopeptides produced by Bacillus subtilis natto Bna05. Microbiol China 44(11):2660–2668
Wang Y, Tian J, Shi F, Li X, Hu Z, Chu J (2021) Protective effect of surfactin on copper sulfate-induced inflammation, oxidative stress, and hepatic injury in zebrafish. Microbiol Immunol 65(10):410–421. https://doi.org/10.1111/1348-0421.12924
Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, Hong M (2001) Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophys J 81(4):2203–2214. https://doi.org/10.1016/S0006-3495(01)75868-7
Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M (2002) Solid-state NMR investigations of peptide−lipid interaction and orientation of a β-sheet antimicrobial peptide, protegrin. Biochem 41(31):9852–9862. https://doi.org/10.1021/bi0257991
Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81(3):1475–1485
Yang LL, Lv FX, Bie XM, He YJ, Wang T, Lu ZX (2011) Study on the anti-Aeromonas hydrophila effect in vitro of lipopeptide from Bacillus subtilis fmbJ. Food Sci 32(01):193–198
Zanotto AW, Valério A, de Andrade CJ, Pastore GM (2019) New sustainable alternatives to reduce the production costs for surfactin 50 years after the discovery. Appl Microbiol Biotechnol 103(21):8647–8656. https://doi.org/10.1007/s00253-019-10123-7
Zeraik AE, Nitschke M (2010) Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr Microbiol 61(6):554–559. https://doi.org/10.1007/s00284-010-9652-z
Zhai S, Li J, Shi Q (2015) Antimicrobial lipopeptide surfactin: antimicrobial activity and applications. Chin J Animal Nutr 27(5):1333–1340
Zhai SW, Shi QC, Wang N, Lu P, Guo QX (2016) Effects of antimicrobial lipopeptides surfactin supplementation on growth performance and intestinal digestive enzyme activities of Juvenile Chinese soft-shelled turtle (Pelodiscus sinensis). Feed Ind 2:29–32
Zhu Y, Mohapatra S, Weisshaar JC (2019) Rigidification of the Escherichia coli cytoplasm by the human antimicrobial peptide LL-37 revealed by superresolution fluorescence microscopy. Proc Nat Acad Sci 116(3):1017–1026. https://doi.org/10.1073/pnas.1814924116
.
Funding
This study was supported by the National Natural Science Foundation of China (No. 32072182).
Author information
Authors and Affiliations
Contributions
XC: writing the manuscript. YL, MS and HZ: editing the manuscript. ZL and YL: revising the manuscript.
Corresponding authors
Ethics declarations
Competing interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, X., Lu, Y., Shan, M. et al. A mini-review: mechanism of antimicrobial action and application of surfactin. World J Microbiol Biotechnol 38, 143 (2022). https://doi.org/10.1007/s11274-022-03323-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11274-022-03323-3