Abstract
Campylobacter jejuni is the one of the leading cause of bacterial food borne gastroenteritis. PglB, a glycosyltransferase, plays a crucial role of mediating glycosylation of numerous periplasmic proteins. It catalyzes N-glycosylation at the sequon D/E-X1-N-X2-S/T in its substrate proteins. Here we report that the PglB itself is a glycoprotein which self-glycosylates at N534 site in its DYNQS sequon by its own catalytic WWDYG motif. Site-directed mutagenesis, lectin Immunoblot, and mobility shift assays confirmed that the DYNQS is an N-glycosylation motif. PglB’s N-glycosylation motif is structurally and functionally similar to its widely studied glycosylation substrate, the OMPH1. Its DYNQS motif forms a solvent-exposed crest. This motif is close to a cluster of polar and hydrophilic residues, which form a loop flanked by two α helices. This arrangement extremely apposite for auto-glycosylation at N534. This self-glycosylation ability of PglB could mediate C. jejuni’s ability to colonize the intestinal epithelium. Further this capability may also bear significance for the development of novel conjugated vaccines and diagnostic tests.
Similar content being viewed by others
References
Alaimo C, Catrein I, Morf L, Marolda CL, Callewaert N, Valvano MA et al (2006) Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J 25(5):967
Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS PROT database. Biochim Biophys Acta (BBA) - Bioenergetics 1473(1), 4–8.
Baik SC, Kim KM, Song SM, Kim DS, Jun JS, Lee SG et al (2004) Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol 186(4):949–955
Bisaria VS (1989) Regulatory aspects of cellulase biosynthesis and secretion. Crit Rev Biotechnol 9(2):61–103
Bisaria VS, Mishra S (1989) Regulatory aspects of cellulase biosynthesis and secretion. Crit Rev Biotechnol 9(2):61–103. https://doi.org/10.3109/07388558909040616
Breton C, Imberty A (1999) Structure/function studies of glycosyltransferases. Curr Opin Struct Biol 9:563–571
Charnock SJ, Davies GJ (1999) Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38:6380–6385
Chen MM, Glover KJ, Imperiali B (2007) From peptide to protein: comparative analysis of the substrate specificity of N-linked glycosylation in C. jejuni. Biochemistry 46(18):5579–5585. https://doi.org/10.1021/bi602633n
Dempski RE Jr, Imperiali B (2002) Oligosaccharyl transferase: gatekeeper to the secretory pathway. Curr Opin Chem Biol 6(6):844–850
Dewey KG, Mayers DR (2011) Early child growth: how do nutrition and infection interact? Matern Child Nutr 7(Suppl 3):129–142. https://doi.org/10.1111/j.1740-8709.2011.00357.x
Glover KJ, Weerapana E, Numao S, Imperiali B (2005a) Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem Biol 12(12):1311–1315. https://doi.org/10.1016/j.chembiol.2005.10.004
Glover KJ, Weerapana E, Imperiali B (2005b) In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc Natl Acad Sci USA 102(40):14255
Godfroid J, Scholz HC, Barbier T, Nicolas C, Wattiau P, Fretin D et al (2011) Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Prev Vet Med 102(2):118–131. https://doi.org/10.1016/j.prevetmed.2011.04.007
Gravel P, Golaz O, Walzer C, Hochstrasser DF, Turler H, Balant LP (1994) Analysis of glycoproteins separated by two-dimensional gel electrophoresis using lectin blotting revealed by chemiluminescence. Anal Biochem 221(1):66–71. https://doi.org/10.1006/abio.1994.1380
Hamorsky KT, Kouokam JC, Jurkiewicz JM, Nelson B, Moore LJ, Husk AS et al (2015) N-Glycosylation of cholera toxin B subunit in Nicotiana benthamiana: impacts on host stress response, production yield and vaccine potential. Sci Rep 5:8003. https://doi.org/10.1038/srep08003
Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049
Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16(4):47R–62R. https://doi.org/10.1093/glycob/cwj066
Kelleher DJ, Karaoglu D, Mandon EC, Gilmore R (2003) Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol Cell 12(1):101–111
Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664
Kowarik M, Numao S, Feldman MF, Schulz BL, Callewaert N, Kiermaier E et al (2006a) N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314(5802):1148–1150. https://doi.org/10.1126/science.1134351
Kowarik M, Young NM, Numao S, Schulz BL, Hug I, Callewaert N et al (2006b) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25(9):1957–1966. https://doi.org/10.1038/sj.emboj.7601087
Kuhn P, Guan C, Cui T, Tarentino AL, Plummer TH Jr, Van Roey P (1995a) Active site and oligosaccharide recognition residues of peptide-N4-(N-acetyl-beta-D-glucosaminyl) asparagine amidase F. J Biol Chem 270:13192–13196
Kuhn P, Guan C, Cui T, Tarentino AL, Plummer TH Jr, Van Roey P (1995b) Active site and oligosaccharide recognition residues of peptide-N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase F. J Biol Chem 270(49):29493–29497
Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555
Lalonde M-E, Durocher Y (2017) Therapeutic glycoprotein production in mammalian cells. J Biotechnol 251:128–140. https://doi.org/10.1016/j.jbiotec.2017.04.028
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/S0021889892009944
Lee TY, Huang HD, Hung JH, Huang HY, Yang YS, Wang TH (2006) dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res 34(Database issue):D622–627. https://doi.org/10.1093/nar/gkj083
Li L (2010) Overexpression and topology of bacterial oligosaccharyltransferase PglB. Biochem Biophys Res Commun 394:1069–1074
Li G, Yan Q, Nita-Lazar A, Haltiwanger RS, Lennarz WJ (2005) Studies on the N-glycosylation of the subunits of oligosaccharyl transferase in Saccharomyces cerevisiae. J Biol Chem 280(3):1864–1871. https://doi.org/10.1074/jbc.M410969200
Linton D, Dorrell N, Hitchen PG, Amber S, Karlyshev AV, Morris HR et al (2005) Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 55(6):1695–1703. https://doi.org/10.1111/j.1365-2958.2005.04519.x
Maita N, Nyirenda J, Igura M, Kamishikiryo J, Kohda D (2010) Comparative structural biology of eubacterial and archaeal oligosaccharyltransferases. J Biol Chem 285(7):4941–4950. https://doi.org/10.1074/jbc.M109.081752
Masso M, Vaisman II (2010) AUTO-MUTE: web-based tools for predicting stability changes in proteins due to single amino acid replacements. Protein Eng Des Sel 23(8):683–687
Melo F, Sanchez R, Sali A (2002) Statistical potentials for fold assessment. Protein Sci 11(2):430–448. https://doi.org/10.1002/pro.110430
Muller A, Thomas GH, Horler R, Brannigan JA, Blagova E, Levdikov VM et al (2005) An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein. Mol Microbiol 57(1):143–155. https://doi.org/10.1111/j.1365-2958.2005.04691.x
Nothaft H, Davis B, Lock YY, Perez-Munoz ME, Vinogradov E, Walter J et al (2016) Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine. Sci Rep 6:26511
Olsen O, Thomsen KK (1991) Improvement of bacterial β-glucanase thermostability by glycosylation. J Gen Microbiol 137:579–585
Omasits U, Ahrens CH, Muller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6):884–886. https://doi.org/10.1093/bioinformatics/btt607
Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14:103–114
Pintar KDM, Christidis T, Thomas MK, Anderson M, Nesbitt A, Keithlin J et al (2015) A systematic review and meta-analysis of the Campylobacter spp. prevalence and concentration in household pets and petting zoo animals for use in exposure assessments. PLoS ONE 10(12):e0144976. https://doi.org/10.1371/journal.pone.0144976
Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626
Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AVG, Crossett B et al (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteom: MCP 10(2):M000031–MCP000201. https://doi.org/10.1074/mcp.M000031-MCP201
Shoukat A, Van Exan R, Moghadas SM (2018) Cost-effectiveness of a potential vaccine candidate for Haemophilus influenzae serotype ‘a’. Vaccine 36(12):1681–1688. https://doi.org/10.1016/j.vaccine.2018.01.047
Silberstein S, Gilmore R (1996) Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J 10:849–858
Srichaisupakit A, Ohashi T, Fujiyama K (2014) Identification of a protein glycosylation operon from Campylobacter jejuni JCM 2013 and its heterologous expression in Escherichia coli. J Biosci Bioeng 118(3):256–262. https://doi.org/10.1016/j.jbiosc.2014.02.011
Srichaisupakit A, Ohashi T, Misaki R, Fujiyama K (2015) Production of initial-stage eukaryotic N-glycan and its protein glycosylation in Escherichia coli. J Biosci Bioeng 119(4):399–405
Szymanski CM, Wren BW (2005) Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3(3):225–237. https://doi.org/10.1038/nrmicro1100
Szymanski CM, Yao RJ, Ewing CP, Trust TJ, Guerry P (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32:1022–1030
Ünligil UM, Rini JM (2000) Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10:510–517
Upreti RK, Kumar M, Shankar V (2003) Bacterial glycoproteins: functions, biosynthesis and applications. Proteomics 3(4):363–379
Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130
Vonaesch P, Randremanana R, Gody JC, Collard JM, Giles-Vernick T, Doria M et al (2018) Identifying the etiology and pathophysiology underlying stunting and environmental enteropathy: study protocol of the AFRIBIOTA project. BMC Pediatr 18(1):236. https://doi.org/10.1186/s12887-018-1189-5
Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ et al (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793. https://doi.org/10.1126/science.298.5599.1790
Weerapana E, Imperiali B (2006) Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16(6):1
Zheludkov MM, Tsirelson LE (2010) Reservoirs of Brucella infection in nature. Biol Bull 37(7):709–715. https://doi.org/10.1134/S106235901007006X
Zhou M, Wu H (2009a) Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155(2):317
Zhou M, Wu H (2009b) Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155(Pt 2):317–327. https://doi.org/10.1099/mic.0.025221-0
Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological andsequence constraints. Cell 141:897–907
Zufferey R (1995) STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J 3(14):4949–4960
Acknowledgements
HB wishes to thank Higher Education Commission of Pakistan for support and Brendan W Wren at LSHTM for providing necessary Plasmid constructs for the study.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bokhari, H., Maryam, A., Shahid, R. et al. Oligosaccharyltransferase PglB of Campylobacter jejuni is a glycoprotein. World J Microbiol Biotechnol 36, 9 (2020). https://doi.org/10.1007/s11274-019-2784-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11274-019-2784-9