Abstract
With the rapid recent development, deep learning based object detection techniques have been applied to various real-world software systems, especially in safety-critical applications like autonomous driving. However, few studies are conducted to systematically investigate the robustness of state-of-the-art object detection techniques against real-world image corruptions and yet few benchmarks of object detection methods in terms of robustness are publicly available. To bridge this gap, we initiate to create a public benchmark of COCO-C and BDD100K-C, composed of sixteen real-world corruptions according to the real damages in camera sensors and image pipeline. Based on that, we further perform a systematic empirical study and evaluation of twelve representative object detectors covering three different categories of architectures (i.e., two-stage, one-stage, transformer architectures) to identify the current challenges and explore future opportunities. Our key findings include (1) the proposed real-world corruptions pose a threat to object detectors, especially for the corruptions involving colour changes, (2) a detector with a high mAP may still be vulnerable to real-world corruptions, (3) if there are potential cross-scenarios applications, the one-stage detectors are recommended, (4) when object detection architectures suffer from real-world corruptions, the effectiveness of existing robustness enhancement methods is limited, and (5) two-stage and one-stage object detection architectures are more likely to miss detect objects compared with transformer-based methods against the proposed corruptions. Our results highlight the need for designing robust object detection methods against real-world corruption and the need for more effective robustness enhancement methods for existing object detectors.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
According to Liu et al. (2020) the bounding box is considered correct only if the error rate \(err^d_{O_0} < 0.5\).
References
Antilogus, P., Astier, P., Doherty, P., Guyonnet, A., & Regnault, N. (2014). The brighter-fatter effect and pixel correlations in ccd sensors. J. Instrum., 9(03), C03048.
Bolya, D., Zhou, C., Xiao, F., & Lee, Y. J. (2019). YOLACT: Real-time instance segmentation. In: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019 (pp. 9156–9165). IEEE. https://doi.org/10.1109/ICCV.2019.00925
Bruneton, E., & Neyret, F. (2008). Precomputed atmospheric scattering. In Computer graphics forum, Wiley Online Library, (Vol. 27, pp. 1079–1086).
Buades, A., Coll, B., & Morel, J. (2005). A non-local algorithm for image denoising. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA (pp. 60–65). IEEE Computer Society. https://doi.org/10.1109/CVPR.2005.38
Cai, Z., & Vasconcelos, N. (2019). Cascade R-CNN: High quality object detection and instance segmentation. CoRR, arXiv:1906.09756
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. In Vedaldi, A., Bischof, H., Brox, T., Frahm, J. (Eds.), Computer vision - ECCV 2020 - 16th European conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, Springer, Lecture Notes in Computer Science (Vol. 12346, pp. 213–229). https://doi.org/10.1007/978-3-030-58452-8_13
Celestre, R., Rosenberger, M., & Notni, G. (2016). A novel algorithm for bad pixel detection and correction to improve quality and stability of geometric measurements. Journal of Physics: Conference Series, 772, 012002.
Chandra, M., Agarwal, D., & Bansal, A. (2016). Image transmission through wireless channel: A review. In 2016 IEEE 1st international conference on power electronics, intelligent control and energy systems (ICPEICES) (pp. 1–4). IEEE.
Chaves-González, J. M., Vega-Rodríguez, M. A., Gómez-Pulido, J. A., & Sánchez-Pérez, J. M. (2010). Detecting skin in face recognition systems: A colour spaces study. Digital Signal Processing, 20(3), 806–823.
Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang, W., Loy, C. C., & Lin, D. (2019a). Hybrid task cascade for instance segmentation. In IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019 (pp. 4974–4983). Computer Vision Foundation/IEEE. https://doi.org/10.1109/CVPR.2019.00511, arXiv:1901.07518
Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., et al. (2019b). Mmdetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155
CNN. (2016). Who’s responsible when an autonomous car crashes? http://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html
Dong, Y., Fu, Q., Yang, X., Pang, T., Su, H., Xiao, Z., & Zhu, J. (2020). Benchmarking adversarial robustness on image classification. In 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020 (pp 318–328). Computer Vision Foundation/IEEE. https://doi.org/10.1109/CVPR42600.2020.00040, https://ieeexplore.ieee.org/document/9157625
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019 (pp 6568–6577). IEEE. https://doi.org/10.1109/ICCV.2019.00667
Elharrouss, O., Almaadeed, N., & Al-Máadeed, S. (2021). A review of video surveillance systems. The Journal of Visual Communication and Image Representation, 77, 103116. https://doi.org/10.1016/j.jvcir.2021.103116
Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014a). Scalable object detection using deep neural networks. In 2014 IEEE conference on computer vision and pattern recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014 (pp 2155–2162). IEEE Computer Society. https://doi.org/10.1109/CVPR.2014.276
Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014b). Scalable object detection using deep neural networks. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23–28, 2014 (pp 2155–2162). IEEE Computer Society. https://doi.org/10.1109/CVPR.2014.276
Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Gläser, C., Timm, F., Wiesbeck, W., & Dietmayer, K. (2021). Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. The IEEE Transactions on Intelligent Transportation Systems, 22(3), 1341–1360. https://doi.org/10.1109/TITS.2020.2972974
Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of pictorial structures. IEEE Trans Computers, 22(1), 67–92. https://doi.org/10.1109/T-C.1973.223602
Fossum, E. R. (1997). Cmos image sensors: Electronic camera-on-a-chip. IEEE Transactions on Electron Devices, 44(10), 1689–1698. https://doi.org/10.1109/16.628824
Garcia, J., Feng, Y., Shen, J., Almanee, S., Xia, Y., & Chen, Q. A. (2020). A comprehensive study of autonomous vehicle bugs. In Rothermel, G., & Bae, D. (Eds.), ICSE’20: 42nd international conference on software engineering, Seoul, South Korea, 27 June–19 July, 2020 (pp. 385–396). ACM. https://doi.org/10.1145/3377811.3380397
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., & Brendel, W. (2019). Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In 7th international conference on learning representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, https://openreview.net/forum?id=Bygh9j09KX
Guo, Q., Strauss, K., Ceze, L., & Malvar, H. S. (2016). High-density image storage using approximate memory cells. In Proceedings of the twenty-first international conference on architectural support for programming languages and operating systems, Association for Computing Machinery, New York, NY, USA, ASPLOS’16 (pp. 413–426). https://doi.org/10.1145/2872362.2872413
He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask r-cnn. In 2017 IEEE international conference on computer vision (ICCV).
Hendrycks, D., & Dietterich, T. G. (2019). Benchmarking neural network robustness to common corruptions and perturbations. In 7th international conference on learning representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019, OpenReview.net, https://openreview.net/forum?id=HJz6tiCqYm
Islam, M.J., Nguyen, G., Pan, R., & Rajan, H. (2019). A comprehensive study on deep learning bug characteristics. In Dumas, M., Pfahl, D., Apel, S., & Russo, A. (Eds.), Proceedings of the ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26–30, 2019 (pp. 510–520). ACM. https://doi.org/10.1145/3338906.3338955
Kamann, C., & Rother, C. (2021). Benchmarking the robustness of semantic segmentation models with respect to common corruptions. International Journal of Computer Vision, 129(2), 462–483. https://doi.org/10.1007/s11263-020-01383-2
Kawamura, S. (1998). Capturing images with digital still cameras. IEEE Micro, 18(6), 14–19. https://doi.org/10.1109/40.743680
Kim, K., Kim, J., Song, S., Choi, J. H., Joo, C., & Lee, J. S. (2021). Light lies: Optical adversarial attack. arXiv preprint arXiv:2106.09908
Lin, H. Y., Gu, K. D., & Chang, C. H. (2012). Photo-consistent synthesis of motion blur and depth-of-field effects with a real camera model. Image and Vision Computing, 30(9), 605–618.
Lin, T., Goyal, P., Girshick, R. B., He, K., & Dollár, P. (2017). Focal loss for dense object detection. CoRR, arXiv:1708.02002
Lin, T., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C.L. (2014). Microsoft COCO: Common objects in context. In Fleet, D. J., Pajdla, T., Schiele, B., & Tuytelaars, T. (Eds.), Computer Vision—ECCV 2014—13th European conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V, Springer, Lecture Notes in Computer Science (Vol. 8693, pp. 740–755). https://doi.org/10.1007/978-3-319-10602-1_48
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
Liu, J., Wu, C., Wang, Y., Xu, Q., Zhou, Y., Huang, H., Wang, C., Cai, S., Ding, Y., Fan, H., & Wang, J. (2019a). Learning raw image denoising with bayer pattern unification and bayer preserving augmentation. In IEEE conference on computer vision and pattern recognition workshops, CVPR workshops 2019, Long Beach, CA, USA, June 16–20, 2019. Computer Vision Foundation/IEEE (pp. 2070–2077). https://doi.org/10.1109/CVPRW.2019.00259, arXiv:1904.12945
Liu, L., Li, H., & Gruteser, M. (2019b). Edge assisted real-time object detection for mobile augmented reality. In Brewster, S. A., Fitzpatrick, G., Cox, A. L., Kostakos, V. (Eds.), The 25th annual international conference on mobile computing and networking, MobiCom 2019, Los Cabos, Mexico, October 21–25, 2019 (pp. 25:1–25:16). ACM. https://doi.org/10.1145/3300061.3300116
Liu, L., Ouyang, W., Wang, X., Fieguth, P. W., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep learning for generic object detection: A survey. International Journal of Computer Vision, 128(2), 261–318. https://doi.org/10.1007/s11263-019-01247-4
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., & Berg, A. C. (2016). SSD: Single shot multibox detector. In Leibe, B., Matas, J., Sebe, N., Welling, M. (Eds.), Computer vision - ECCV 2016 - 14th European conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I, Springer, Lecture Notes in Computer Science (Vol. 9905, pp. 21–37). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, Y., Ma, Z., Liu, X., Ma, S., & Ren, K. (2022). Privacy-preserving object detection for medical images with faster R-CNN. IEEE Transactions on Information Forensics and Security, 17, 69–84. https://doi.org/10.1109/TIFS.2019.2946476
Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the International Conference on Computer Vision, Kerkyra, Corfu, Greece, September 20–25, 1999 (pp. 1150–1157). IEEE Computer Society. https://doi.org/10.1109/ICCV.1999.790410
Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S., Bethge, M., & Brendel, W. (2019). Benchmarking robustness in object detection: Autonomous driving when winter is coming. CoRR, arXiv:1907.07484
Minh, T. N., Sinn, M., Lam, H. T., & Wistuba, M. (2018). Automated image data preprocessing with deep reinforcement learning. arXiv preprint arXiv:1806.05886
Pathak, A. R., Pandey, M., & Rautaray, S. (2018). Application of deep learning for object detection. Procedia Computer Science, 132, 1706–1717. https://doi.org/10.1016/j.procs.2018.05.144
Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar, Romeny B., Zimmerman, J. B., & Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), 355–368. https://doi.org/10.1016/S0734-189X(87)80186-X
Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. E. P., Shyu, M., Chen, S., & Iyengar, S. S. (2019). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys, 51(5), 92:1-92:36. https://doi.org/10.1145/3234150
Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-Quaderi, G. D., & Shoyaib, M. (2016). An adaptive gamma correction for image enhancement. EURASIP Journal on Image and Video Processing, 1, 1–13.
Rebuffi, S. A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., & Mann, T. A. (2021). Data augmentation can improve robustness. Neural Information Processing Systems, 34, 29935–29948.
Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016 (pp. 779–788). IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.91
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. CoRR, arXiv:1804.02767
Ren, S., He, K., Girshick, R. B., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. CoRR, arXiv:1506.01497
Schwartz, E., Giryes, R., & Bronstein, A. M. (2019). Deepisp: Toward learning an end-to-end image processing pipeline. IEEE Transactions on Image Processing, 28(2), 912–923. https://doi.org/10.1109/TIP.2018.2872858
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2014). Overfeat: Integrated recognition, localization and detection using convolutional networks. In Bengio, Y., LeCun, Y. (Eds.), 2nd international conference on learning representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings, arXiv:1312.6229
She, Q., Feng, F., Hao, X., Yang, Q., Lan, C., Lomonaco, V., Shi, X., Wang, Z., Guo, Y., Zhang, Y., Qiao, F., & Chan, R.H.M. (2020). Openloris-object: A robotic vision dataset and benchmark for lifelong deep learning. In 2020 IEEE international conference on robotics and automation, ICRA 2020, Paris, France, May 31–August 31, 2020 (pp. 4767–4773). IEEE. https://doi.org/10.1109/ICRA40945.2020.9196887
Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430–444. https://doi.org/10.1109/TIP.2005.859378
Sheikh, H. R., Bovik, A. C., & de Veciana, G. (2005). An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 14(12), 2117–2128. https://doi.org/10.1109/TIP.2005.859389
Shekar, A. K., Gou, L., Ren, L., & Wendt, A. (2021). Label-free robustness estimation of object detection cnns for autonomous driving applications. International Journal of Computer Vision, 129, 1185–1201.
Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.
Silva, V. D., Chesnokov, V., & Larkin, D. (2016). A novel adaptive shading correction algorithm for camera systems. In Digital Photography and Mobile Imaging, https://api.semanticscholar.org/CorpusID:36655918
Sindagi, V. A., & Patel, V. M. (2018). A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognition Letters, 107, 3–16. https://doi.org/10.1016/j.patrec.2017.07.007
Sobh, I., Hamed, A., Kumar, V. R., & Yogamani, S. (2021). Adversarial attacks on multi-task visual perception for autonomous driving. arXiv preprint arXiv:2107.07449
Sun, Y., Wang, X., & Tang, X. (2015). Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2892–2900)
Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection. In Burges, C. J. C., Bottou L, Ghahramani, Z., & Weinberger, K. Q. (Eds.), Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5–8, 2013, Lake Tahoe, Nevada, United States (pp. 2553–2561). https://proceedings.neurips.cc/paper/2013/hash/f7cade80b7cc92b991cf4d2806d6bd78-Abstract.html
Tian, Y., Pei, K., Jana, S., & Ray, B. (2018). Deeptest: automated testing of deep-neural-network-driven autonomous cars. In Chaudron, M., Crnkovic, I., Chechik, M., Harman, M. (Eds.), Proceedings of the 40th international conference on software engineering, ICSE 2018, Gothenburg, Sweden, May 27–June 03, 2018 (pp. 303–314). ACM. https://doi.org/10.1145/3180155.3180220
Times, T. N. Y. (2017). Tesal’s self-driving system cleared in deadly crash. https://www.nytimes.com/2017/01/19/business/tesla-model-s-autopilot-fatal-crash.html
Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., & McDaniel, P. (2018). Ensemble adversarial training: Attacks and defenses. In International conference on learning representations, https://openreview.net/forum?id=rkZvSe-RZ
Uricar, M., Sistu, G., Rashed, H., Vobecky, A., Kumar, V.R., Krizek, P., Burger, F., & Yogamani, S. (2021). Let’s get dirty: Gan based data augmentation for camera lens soiling detection in autonomous driving. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV) (pp. 766–775)
Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93(5), 1328–1340.
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861
Wu, B., Iandola, F.N., Jin, P.H., & Keutzer, K. (2017). Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In 2017 IEEE conference on computer vision and pattern recognition workshops, CVPR workshops 2017, Honolulu, HI, USA, July 21–26, 2017 (pp. 446–454). IEEE Computer Society. https://doi.org/10.1109/CVPRW.2017.60
Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., & Yuille, A. (2017). Adversarial examples for semantic segmentation and object detection. In Proceedings of the IEEE international conference on computer vision (pp. 1369–1378).
Ying, J., He, Y., & Zhou, Z. (2009). Analysis on laser spot locating precision affected by cmos sensor fill factor in laser warning system. In 2009 9th international conference on electronic measurement & instruments (pp. 2-202–2-206). https://doi.org/10.1109/ICEMI.2009.5274607
Zhang, Y., Dong, B., & Heide, F. (2022). All you need is raw: Defending against adversarial attacks with camera image pipelines. In European conference on computer vision (pp. 323–343). Springer.
Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random erasing data augmentation. In: Proceedings of the AAAI conference on artificial intelligence, (Vol. 34, pp.13001–13008).
Zhou, J., & Glotzbach, J. (2007). Image pipeline tuning for digital cameras. In 2007 IEEE international symposium on consumer electronics (pp. 1–4). IEEE. https://doi.org/10.1109/ISCE.2007.4382143
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2021). Deformable DETR: Deformable transformers for end-to-end object detection. In 9th international conference on learning representations, ICLR 2021, Virtual Event, Austria, May 3–7, 2021, OpenReview.net, https://openreview.net/forum?id=gZ9hCDWe6ke
Acknowledgements
The authors would like to thank the anonymous reviewers for their insightful comments. This work is supported partially by the National Natural Science Foundation of China (61932012, 62141215, 62372228), Science, Technology, and Innovation Commission of Shenzhen Municipality (CJGJZD20200617103001003), Canada CIFAR AI Chairs Program, the Natural Sciences and Engineering Research Council of Canada (NSERC No.RGPIN-2021-02549, No.RGPAS-2021-00034, No.DGECR-2021-00019), as well as JST-Mirai Program Grant No.JPMJMI20B8, JSPS KAKENHI Grant No.JP21H04877, No.JP23H03372, JP24K02920, and also with the support from TIER IV, Inc. and Autoware Foundation. Chunrong Fang, Jia Liu and Zhenyu Chen are the corresponding authors.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Communicated by Oliver Zendel.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, J., Wang, Z., Ma, L. et al. Benchmarking Object Detection Robustness against Real-World Corruptions. Int J Comput Vis 132, 4398–4416 (2024). https://doi.org/10.1007/s11263-024-02096-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-024-02096-6