[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Predicting Articulated Human Motion from Spatial Processes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a probabilistic interpretation of inverse kinematics and extend it to sequential data. The resulting model is used to estimate articulated human motion in visual data. The approach allows us to express the prior temporal models in spatial limb coordinates, which is in contrast to most recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial coordinates, the approach allows us to construct high quality application specific motion models with little effort. Thirdly, the state space is a real vector space, which allows us to use off-the-shelf stochastic processes as motion models, which is rarely possible when working with joint angles. Fourthly, we avoid the problem of accumulated variance, where noise in one joint affects all joints further down the kinematic chains. All this combined allows us to more easily construct high quality motion models. In the evaluation, we show that an activity independent version of our model is superior to the corresponding state-of-the-art model. We also give examples of activity dependent models that would be hard to phrase directly in terms of joint angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory formation. Brain, 105(2), 331–348.

    Article  Google Scholar 

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.

    Article  MATH  Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.

    MATH  Google Scholar 

  • Bregler, C., Malik, J., & Pullen, K. (2004). Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision, 56, 179–194.

    Article  Google Scholar 

  • Cappé, O., Godsill, S. J., & Moulines, E. (2007). An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5), 899–924.

    Article  Google Scholar 

  • Carreira-Perpinan, M. A., & Lu, Z. (2007). The Laplacian eigenmaps latent variable model. Journal of Machine Learning Research, 2, 59–66.

    Google Scholar 

  • Courty, N., & Arnaud, E. (2008). Inverse kinematics using sequential Monte Carlo methods. In Articulated motion and deformable objects: 5th international conference (pp. 1–10). New York: Springer.

    Chapter  Google Scholar 

  • Elgammal, A. M., & Lee, C. S. (2009). Tracking people on a torus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3), 520–538.

    Article  Google Scholar 

  • Engell-Nørregård, M., Hauberg, S., Lapuyade, J., Erleben, K., & Pedersen, K. S. (2009). Interactive inverse kinematics for monocular motion estimation. In Proceedings of VRIPHYS’09.

    Google Scholar 

  • Engell-Nørregård, M., Niebe, S., & Erleben, K. (2010). Local joint-limits using distance field cones in Euler angle space. In Computer graphics international.

    Google Scholar 

  • Erleben, K., Sporring, J., Henriksen, K., & Dohlmann, H. (2005). Physics based animation. New York: Charles River Media.

    Google Scholar 

  • Fletcher, T. P., Lu, C., Pizer, S. M., & Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23(8), 995–1005.

    Article  Google Scholar 

  • Ganesh, S. (2009). Analysis of goal-directed human actions using optimal control models. PhD thesis, EECS Dept., University of California, Berkeley.

  • Grochow, K., Martin, S. L., Hertzmann, A., & Popović, Z. (2004). Style-based inverse kinematics. ACM Transactions on Graphics, 23(3), 522–531.

    Article  Google Scholar 

  • Hauberg, S., & Pedersen, K. S. (2011). Stick it! articulated tracking using spatial rigid object priors. In R. Kimmel, R. Klette, & A. Sugimoto (Eds.), Lecture notes in computer science: Vol. 6494. ACCV 2010 (pp. 758–769). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Hauberg, S., Lapuyade, J., Engell-Nørregård, M., Erleben, K., & Pedersen, K. S. (2009). Three dimensional monocular human motion analysis in end-effector space. In D. Cremers et al. (Ed.), Energy minimization methods in computer vision and pattern recognition. LNCS (pp. 235–248). Berlin: Springer.

    Chapter  Google Scholar 

  • Hauberg, S., Sommer, S., & Pedersen, K. S. (2010). Gaussian-like spatial priors for articulated tracking. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), LNCS: Vol. 6311. ECCV 2010 (pp. 425–437). Berlin: Springer.

    Chapter  Google Scholar 

  • Herda, L., Urtasun, R., & Fua, P. (2004). Hierarchial implicit surface joint limits to constrain video-based motion capture. In T. Pajdla & J. Matas (Eds.), LCNS: Vol. 3022. Computer vision – ECCV 2004 (pp. 405–418). Berlin: Springer.

    Chapter  Google Scholar 

  • Horaud, R., Niskanen, M., Dewaele, G., & Boyer, E. (2009). Human motion tracking by registering an articulated surface to 3d points and normals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 158–163.

    Article  Google Scholar 

  • Kerlow, I. V. (2003). Art of 3D computer animation and effects (3rd edn.). New York: Wiley.

    Google Scholar 

  • Kjellström, H., Kragić, D., & Black, M. J. (2010). Tracking people interacting with objects. In CVPR ’10: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition.

    Google Scholar 

  • Knossow, D., Ronfard, R., & Horaud, R. (2008). Human motion tracking with a kinematic parameterization of extremal contours. International Journal of Computer Vision, 79(2), 247–269.

    Article  Google Scholar 

  • Lu, Z., Carreira-Perpinan, M., & Sminchisescu, C. (2008). People Tracking with the Laplacian Eigenmaps Latent Variable Model. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems 20 (pp. 1705–1712). Cambridge: MIT Press.

    Google Scholar 

  • Moeslund, T. B., Hilton, A., & Krüger, V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2), 90–126.

    Article  Google Scholar 

  • Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223–227.

    Article  Google Scholar 

  • Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer Series in Operations Research. Berlin: Springer.

    Google Scholar 

  • Poon, E., & Fleet, D. J. (2002). Hybrid Monte Carlo filtering: edge-based people tracking. In IEEE workshop on motion and video computing (pp. 151–158).

    Chapter  Google Scholar 

  • Poppe, R. (2007). Vision-based human motion analysis: An overview. Computer Vision and Image Understanding, 108(1–2), 4–18.

    Article  Google Scholar 

  • Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Rosenhahn, B., Schmaltz, C., Brox, T., Weickert, J., Cremers, D., & Seidel, H. P. (2008). Markerless motion capture of man-machine interaction. In IEEE computer society conference on computer vision and pattern recognition (pp. 1–8).

    Google Scholar 

  • Salzmann, M., & Urtasun, R. (2010). Combining discriminative and generative methods for 3d deformable surface and articulated pose reconstruction. In Proceedings of CVPR’10.

    Google Scholar 

  • Sidenbladh, H., Black, M. J., & Fleet, D. J. (2000). Stochastic tracking of 3d human figures using 2d image motion. In Lecture notes in computer science 1843: Vol. II. Proceedings of ECCV’00 (pp. 702–718).

    Google Scholar 

  • Sminchisescu, C., & Jepson, A. (2004). Generative modeling for continuous non-linearly embedded visual inference. In ICML’04: Proceedings of the twenty-first international conference on machine learning (pp. 759–766). New York: ACM.

    Google Scholar 

  • Sminchisescu, C., & Triggs, B. (2003). Kinematic jump processes for monocular 3D human tracking. In IEEE international conference on computer vision and pattern recognition (pp. 69–76).

    Google Scholar 

  • Tournier, M., Wu, X., Courty, N., Arnaud, E., & Reveret, L. (2009). Motion compression using principal geodesics analysis. Computer Graphics Forum, 28(2), 355–364.

    Article  Google Scholar 

  • Urtasun, R., Fleet, D. J., Hertzmann, A., & Fua, P. (2005). Priors for people tracking from small training sets. In Tenth IEEE international conference on computer vision: Vol. 1. (pp. 403–410).

    Google Scholar 

  • Urtasun, R., Fleet, D. J., & Fua, P. (2006). 3D People tracking with Gaussian process dynamical models. In CVPR ’06: Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition (pp. 238–245).

    Google Scholar 

  • Urtasun, R., Fleet, D. J., Geiger, A., Popović, J., Darrell, T. J., & Lawrence, N. D. (2008). Topologically-constrained latent variable models. In ICML ’08: Proceedings of the 25th international conference on machine learning (pp. 1080–1087). New York: ACM.

    Chapter  Google Scholar 

  • Wang, J. M., Fleet, D. J., & Hertzmann, A. (2008). Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 283–298.

    Article  Google Scholar 

  • Zhao, J., & Badler, N. I. (1994). Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Transactions on Graphics, 13(4), 313–336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Hauberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauberg, S., Pedersen, K.S. Predicting Articulated Human Motion from Spatial Processes. Int J Comput Vis 94, 317–334 (2011). https://doi.org/10.1007/s11263-011-0433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-011-0433-3

Keywords

Navigation