Abstract
We present a probabilistic interpretation of inverse kinematics and extend it to sequential data. The resulting model is used to estimate articulated human motion in visual data. The approach allows us to express the prior temporal models in spatial limb coordinates, which is in contrast to most recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial coordinates, the approach allows us to construct high quality application specific motion models with little effort. Thirdly, the state space is a real vector space, which allows us to use off-the-shelf stochastic processes as motion models, which is rarely possible when working with joint angles. Fourthly, we avoid the problem of accumulated variance, where noise in one joint affects all joints further down the kinematic chains. All this combined allows us to more easily construct high quality motion models. In the evaluation, we show that an activity independent version of our model is superior to the corresponding state-of-the-art model. We also give examples of activity dependent models that would be hard to phrase directly in terms of joint angles.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory formation. Brain, 105(2), 331–348.
Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.
Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.
Bregler, C., Malik, J., & Pullen, K. (2004). Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision, 56, 179–194.
Cappé, O., Godsill, S. J., & Moulines, E. (2007). An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5), 899–924.
Carreira-Perpinan, M. A., & Lu, Z. (2007). The Laplacian eigenmaps latent variable model. Journal of Machine Learning Research, 2, 59–66.
Courty, N., & Arnaud, E. (2008). Inverse kinematics using sequential Monte Carlo methods. In Articulated motion and deformable objects: 5th international conference (pp. 1–10). New York: Springer.
Elgammal, A. M., & Lee, C. S. (2009). Tracking people on a torus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3), 520–538.
Engell-Nørregård, M., Hauberg, S., Lapuyade, J., Erleben, K., & Pedersen, K. S. (2009). Interactive inverse kinematics for monocular motion estimation. In Proceedings of VRIPHYS’09.
Engell-Nørregård, M., Niebe, S., & Erleben, K. (2010). Local joint-limits using distance field cones in Euler angle space. In Computer graphics international.
Erleben, K., Sporring, J., Henriksen, K., & Dohlmann, H. (2005). Physics based animation. New York: Charles River Media.
Fletcher, T. P., Lu, C., Pizer, S. M., & Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23(8), 995–1005.
Ganesh, S. (2009). Analysis of goal-directed human actions using optimal control models. PhD thesis, EECS Dept., University of California, Berkeley.
Grochow, K., Martin, S. L., Hertzmann, A., & Popović, Z. (2004). Style-based inverse kinematics. ACM Transactions on Graphics, 23(3), 522–531.
Hauberg, S., & Pedersen, K. S. (2011). Stick it! articulated tracking using spatial rigid object priors. In R. Kimmel, R. Klette, & A. Sugimoto (Eds.), Lecture notes in computer science: Vol. 6494. ACCV 2010 (pp. 758–769). Heidelberg: Springer.
Hauberg, S., Lapuyade, J., Engell-Nørregård, M., Erleben, K., & Pedersen, K. S. (2009). Three dimensional monocular human motion analysis in end-effector space. In D. Cremers et al. (Ed.), Energy minimization methods in computer vision and pattern recognition. LNCS (pp. 235–248). Berlin: Springer.
Hauberg, S., Sommer, S., & Pedersen, K. S. (2010). Gaussian-like spatial priors for articulated tracking. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), LNCS: Vol. 6311. ECCV 2010 (pp. 425–437). Berlin: Springer.
Herda, L., Urtasun, R., & Fua, P. (2004). Hierarchial implicit surface joint limits to constrain video-based motion capture. In T. Pajdla & J. Matas (Eds.), LCNS: Vol. 3022. Computer vision – ECCV 2004 (pp. 405–418). Berlin: Springer.
Horaud, R., Niskanen, M., Dewaele, G., & Boyer, E. (2009). Human motion tracking by registering an articulated surface to 3d points and normals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 158–163.
Kerlow, I. V. (2003). Art of 3D computer animation and effects (3rd edn.). New York: Wiley.
Kjellström, H., Kragić, D., & Black, M. J. (2010). Tracking people interacting with objects. In CVPR ’10: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition.
Knossow, D., Ronfard, R., & Horaud, R. (2008). Human motion tracking with a kinematic parameterization of extremal contours. International Journal of Computer Vision, 79(2), 247–269.
Lu, Z., Carreira-Perpinan, M., & Sminchisescu, C. (2008). People Tracking with the Laplacian Eigenmaps Latent Variable Model. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems 20 (pp. 1705–1712). Cambridge: MIT Press.
Moeslund, T. B., Hilton, A., & Krüger, V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2), 90–126.
Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223–227.
Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.
Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer Series in Operations Research. Berlin: Springer.
Poon, E., & Fleet, D. J. (2002). Hybrid Monte Carlo filtering: edge-based people tracking. In IEEE workshop on motion and video computing (pp. 151–158).
Poppe, R. (2007). Vision-based human motion analysis: An overview. Computer Vision and Image Understanding, 108(1–2), 4–18.
Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.
Rosenhahn, B., Schmaltz, C., Brox, T., Weickert, J., Cremers, D., & Seidel, H. P. (2008). Markerless motion capture of man-machine interaction. In IEEE computer society conference on computer vision and pattern recognition (pp. 1–8).
Salzmann, M., & Urtasun, R. (2010). Combining discriminative and generative methods for 3d deformable surface and articulated pose reconstruction. In Proceedings of CVPR’10.
Sidenbladh, H., Black, M. J., & Fleet, D. J. (2000). Stochastic tracking of 3d human figures using 2d image motion. In Lecture notes in computer science 1843: Vol. II. Proceedings of ECCV’00 (pp. 702–718).
Sminchisescu, C., & Jepson, A. (2004). Generative modeling for continuous non-linearly embedded visual inference. In ICML’04: Proceedings of the twenty-first international conference on machine learning (pp. 759–766). New York: ACM.
Sminchisescu, C., & Triggs, B. (2003). Kinematic jump processes for monocular 3D human tracking. In IEEE international conference on computer vision and pattern recognition (pp. 69–76).
Tournier, M., Wu, X., Courty, N., Arnaud, E., & Reveret, L. (2009). Motion compression using principal geodesics analysis. Computer Graphics Forum, 28(2), 355–364.
Urtasun, R., Fleet, D. J., Hertzmann, A., & Fua, P. (2005). Priors for people tracking from small training sets. In Tenth IEEE international conference on computer vision: Vol. 1. (pp. 403–410).
Urtasun, R., Fleet, D. J., & Fua, P. (2006). 3D People tracking with Gaussian process dynamical models. In CVPR ’06: Proceedings of the 2006 IEEE computer society conference on computer vision and pattern recognition (pp. 238–245).
Urtasun, R., Fleet, D. J., Geiger, A., Popović, J., Darrell, T. J., & Lawrence, N. D. (2008). Topologically-constrained latent variable models. In ICML ’08: Proceedings of the 25th international conference on machine learning (pp. 1080–1087). New York: ACM.
Wang, J. M., Fleet, D. J., & Hertzmann, A. (2008). Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 283–298.
Zhao, J., & Badler, N. I. (1994). Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Transactions on Graphics, 13(4), 313–336.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hauberg, S., Pedersen, K.S. Predicting Articulated Human Motion from Spatial Processes. Int J Comput Vis 94, 317–334 (2011). https://doi.org/10.1007/s11263-011-0433-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-011-0433-3