[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Regularized Framework for Feature Selection in Face Detection and Authentication

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper proposes a general framework for selecting features in the computer vision domain—i.e., learning descriptions from data—where the prior knowledge related to the application is confined in the early stages. The main building block is a regularization algorithm based on a penalty term enforcing sparsity. The overall strategy we propose is also effective for training sets of limited size and reaches competitive performances with respect to the state-of-the-art. To show the versatility of the proposed strategy we apply it to both face detection and authentication, implementing two modules of a monitoring system working in real time in our lab. Aside from the choices of the feature dictionary and the training data, which require prior knowledge on the problem, the proposed method is fully automatic. The very good results obtained in different applications speak for the generality and the robustness of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: application to face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.

    Article  Google Scholar 

  • Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces versus fisherfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19, 711–720.

    Article  Google Scholar 

  • Brown, M., Costen, N. P., & Akamatsu, S. (2004). Efficient calculation of the complete optimal classification set. In Proc. of the 17th ICPR.

  • Candes, E., & Tao, T. (2007). The Dantzig selector: statistical estimation when p is much larger than n. The Annals of Statistics, 35(6), 2313–2351.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, S. S., Donoho, D., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 20(1), 33–61.

    Article  MathSciNet  Google Scholar 

  • Daubechies, I., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57, 1413–1457.

    Article  MathSciNet  MATH  Google Scholar 

  • De Mol, C., Mosci, S., Traskine, M. S., & Verri, A. (2007). A regularized method for selecting nested groups of relevant genes from microarray data (Technical Report DISI-TR-07-04). Dipartimento di informatica e scienze dell’informazione, Universita’ di Genova. Available at http://arxiv.org/abs/0809.1777.

  • Destrero, A., De Mol, C., Odone, F., & Verri, A. (2007a, to appear). A sparsity-enforcing method for learning face features. In IEEE Transactions on Image Processing.

  • Destrero, A., De Mol, C., Odone, F., & Verri, A. (2007b). A regularized approach to feature selection for face detection. In Yagi, Y. et al. (Eds.), LNCS : Vol. 4844. Proc. of the Asian conference on computer vision, ACCV (pp. 881–890). Berlin: Springer.

    Google Scholar 

  • Etemad, K., & Chellappa, R. (1997). Discriminant analysis for recognition of human face images. Journal of the Optical Society of America A, 14, 1724–1733.

    Article  Google Scholar 

  • Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. In European conference on computational learning theory (pp. 23–37).

  • Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2), 337–407

    Article  MathSciNet  Google Scholar 

  • Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6).

  • Guyon, I., & Elisseeff, E. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

    Article  MATH  Google Scholar 

  • Hadid, A., Pietikäinen, M., & Li, S. Z. (2007). Learning personal specific facial dynamics for face recognition from videos. In AMFG07 (pp. 1–15).

  • Joachims, T. (1999). Making large-scale SVM learning practical. In Schölkopf, B., Burges, C., & Smola, A. (Eds.), Advances in kernel methods—support vector learning. Cambridge: MIT Press.

    Google Scholar 

  • Lanzarotti, R., Arca, S., & Campadelli, P. (2006). A face recognition system based on automatically determined facial fiducial points. Pattern recognition, 39(3), 432–443.

    Article  MATH  Google Scholar 

  • Li, S. Z., & Zhang, Z. Q. (2004). FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1112–1123.

    Article  Google Scholar 

  • Liu, X., Chen, T., & Vijaya Kumar, B. V. K. (2003). On modeling variations for face authentication. Pattern Recognition, 36(2), 313–328.

    Article  Google Scholar 

  • Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostyn, A., Marcel, S., Bengio, S., Cardinaux, F., Sanderson, C., Poh, N., Rodriguez, Y., Kryszczuk, K., Czyz, J., Vandendorpe, L., Ng, J., Cheung, H., & Tang, B. (2004). Face authentication competition on the banca database. In LNCS : Vol. 3072. Biometric authentication. Springer: Berlin.

    Google Scholar 

  • Moghaddam, B., & Pentland, A. (1997). Probabilistic visual learning for object representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 696–710.

    Article  Google Scholar 

  • Mohan, A., Papageorgiou, C., & Poggio, T. (2001). Example-based object detection in images by components. IEEE Transactions on PAMI, 23(4), 349–361.

    Google Scholar 

  • Olshauser, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 37(23), 3311–3325.

    Article  Google Scholar 

  • Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: an application to face detection. In Proceedings IEEE int. conference on computer vision and pattern recognition (CVPR).

  • Papageorgiou, C., & Poggio, T. (2000). A trainable system for object detection. International Journal of Computer Vision, 38(1), 15–33.

    Article  MATH  Google Scholar 

  • Pentland, A., Moghaddam, B., & Starner, T. (1994). View-based and modular eigenspaces for face recognition. In IEEE int. conf. on computer vision and pattern recognition (CVPR) (pp. 84–91).

  • Pentland, A., Moghaddam, B., & Starner, T. (1998). Estimation of eye, eyebrow and nose features in videophone sequences. In International workshop on very low bitrate video coding (VLBV 98) (pp. 101–104).

  • Roth, V. (2004). The generalized lasso. IEEE Transactions on Neural Networks, 15(1), 16–28.

    Article  Google Scholar 

  • Schapire, R. E., & Singer, Y. (1999). Improved boosting using confidence-rated predictions. Machine Learning, 37(3), 297–336.

    Article  MATH  Google Scholar 

  • Schneiderman, H., & Kanade, T. (2000). A statistical method for 3D object detection applied to faces and cars. In International conference on computer vision.

  • Tan, X., & Triggs, B. (2007). Enhanced local texture feature sets for face recognition under difficult lighting conditions. In AMFG (pp. 168–182).

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society B, 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  • Tipping, M. (2001). Sparse Bayesian learning and the relevant vector machine. Journal of Machine Learning Research, 1, 211–244

    Article  MathSciNet  MATH  Google Scholar 

  • Turk, M. A., & Pentland, A. P. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.

    Article  Google Scholar 

  • Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5(7), 1–6.

    Google Scholar 

  • Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

    MATH  Google Scholar 

  • Verschae, R., & Ruiz del Solar, J. (2003). A hybrid face detector based on an asymmetrical Adaboost cascade detector and a wavelet-Bayesian-detector. In Lecture notes in computer science : Vol. 2686. Computational methods in neural modeling. Berlin: Springer.

    Chapter  Google Scholar 

  • Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal on Computer Vision, 57(2), 137–154.

    Article  Google Scholar 

  • Wang, H., Li, P., & Zhang, T. (2008). Histogram feature-based fisher linear discriminant for face detection. Neural Computing and Applications, 17(1), 49–58.

    Article  Google Scholar 

  • Weston, J., Elisseeff, A., Scholkopf, B., & Tipping, M. (2003). The use of zero-norm with linear models and kernel methods. Journal of Machine Learning Research, 3, 1439–1461

    Article  MATH  Google Scholar 

  • Wiskott, L., Fellous, J., Kuiger, N., & von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 775–779.

    Article  Google Scholar 

  • Yang, M.-H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 34–58.

    Article  Google Scholar 

  • Zhang, D., Li, S. Z., & Gatica-Perez, D. (2004). Real-time face detection using boosting in hierarchical feature spaces. In Proc. of ICPR.

  • Zhao, W., Chellappa, R., Rosenfeld, A., & Phillips, P. J. (2003). Face recognition: A literature survey. ACM computing surveys (pp. 399–458).

  • Zhu, J., Rosset, S., Hastie, T., & Tibshirani, R. (2004). 1-norm support vector machines. In Advances in neural information processing systems 16. MIT Press: Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Odone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Destrero, A., De Mol, C., Odone, F. et al. A Regularized Framework for Feature Selection in Face Detection and Authentication. Int J Comput Vis 83, 164–177 (2009). https://doi.org/10.1007/s11263-008-0180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0180-2

Keywords

Navigation