Abstract
Motion estimation is usually based on the brightness constancy assumption. This assumption holds well for rigid objects with a Lambertian surface, but it is less appropriate for fluid and gaseous materials. For these materials an alternative assumption is required. This work examines three possible alternatives: gradient constancy, color constancy and brightness conservation (under this assumption the brightness of an object can diffuse to its neighborhood). Brightness conservation and color constancy are found to be adequate models. We propose a method for detecting regions of dynamic texture in image sequences. Accurate segmentation into regions of static and dynamic texture is achieved using a level set scheme. The level set function separates each image into regions that obey brightness constancy and regions that obey the alternative assumption. We show that the method can be simplified to obtain a less robust but fast algorithm, capable of real-time performance. Experimental results demonstrate accurate segmentation by the full level set scheme, as well as by the simplified method. The experiments included challenging image sequences, in which color or geometry cues by themselves would be insufficient.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amiaz, T., & Kiryati, N. (2006). Piecewise-smooth dense optical flow via level sets. International Journal of Computer Vision, 68(2), 111–124.
Amiaz, T., Fazekas, S., Chetverikov, D., & Kiryati, N. (2007). Detecting regions of dynamic texture. In LNCS : Vol. 4485. Proc. SSVM 2007 (pp. 848–859). Berlin: Springer.
Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2(3), 283–310.
Béréziat, D., Herlin, I., & Younes, L. (2000). A generalized optical flow constraint and its physical interpretation. In Proc. conf. comp. vision pattern rec. (pp. 487–492).
Black, M. J., & Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1), 75–104.
Bouthemy, P., & Fablet, R. (1998). Motion characterization from temporal co-occurrences of local motion-based measures for video indexing. In Proc. int. conf. pattern recognition (Vol. 1, pp. 905–908).
Boykov, Y. Y., & Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in n–d images. In 8th int. conf. on computer vision (Vol. 01, pp. 105–112).
Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In LNCS : Vol. 3024. Proc. European conf. on computer vision (pp. 25–36). Berlin: Springer.
Brox, T., Bruhn, A., & Weickert, J. (2006). Variational motion segmentation with level sets. In LNCS : Vol. 3951. Proc. European conf. on computer vision (pp. 471–483). Berlin: Springer.
Bruce, V., Green, P. R., & Georgeson, M. (1996). Visual perception. Psychology Press.
Burnham, K., & Anderson, D. (1998). Model selection and inference—a practical information-theoretic approach. Berlin: Springer.
Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79.
Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.
Chetverikov, D., & Péteri, R. (2005). A brief survey of dynamic texture description and recognition. In 4th int. conf. on computer recognition systems (pp. 17–26).
Corpetti, T., Mémin, E., & Pérez, P. (2000). Adaptation of standard optic methods to fluid motion. In Int. symposium on flow visualization (pp. 1–10).
Cremers, D., & Soatto, S. (2004). Motion competition: A variational approach to piecewise parametric motion segmentation. International Journal of Computer Vision, 62(3), 249–265.
Cuzol, A., & Mémin, E. (2005). Vortex and source particles for fluid motion estimation. In LNCS : Vol. 3459. Proc. scale-space 2005 (pp. 254–266). Berlin: Springer.
Cuzol, A., Hellier, P., & Mémin, E. (2007). A low dimensional fluid motion estimator. International Journal of Computer Vision, 75(3), 329–349.
Dervieux, A., & Thomasset, F. (1979). A finite element method for the simulation of rayleigh-Taylor instability. In Lecture notes in mathematics (Vol. 771, pp. 145–158).
Doretto, G., Chiuso, A., Soatto, S., & Wu, Y. N. (2003a). Dynamic textures. International Journal of Computer Vision, 51, 91–109.
Doretto, G., Cremers, D., Favaro, P., & Soatto, S. (2003b). Dynamic texture segmentation. In Ninth int. conf. on computer vision (p. 1236).
Doretto, G., Jones, E., & Soatto, S. (2004). Spatially homogeneous dynamic textures. In LNCS : Vol. 3022. Proc. European conf. on computer vision (pp. 591–602). Berlin: Springer.
Fablet, R., & Bouthemy, P. (2003). Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 1619–1624.
Fazekas, S., Amiaz, T., Chetverikov, D., & Kiryati, N. (2007). Dynamic texture detection and segmentation. http://vision.sztaki.hu/~fazekas/dtsegm.
Fazekas, S., & Chetverikov, D. (2005). Normal versus complete flow in dynamic texture recognition: A comparative study. In Int. workshop on texture analysis and synthesis (pp. 37–42).
Fazekas, S., & Chetverikov, D. (2007). Analysis and performance evaluation of optical flow features for dynamic texture recognition. Signal Processing: Image Communication, 22, 680–691. Special issue on Content-Based Multimedia Indexing.
Fujita, K., & Nayar, S. (2003). Recognition of dynamic textures using impulse responses of state variables. In Int. workshop on texture analysis and synthesis (pp. 31–36).
Galun, M., Apartsin, A., & Basri, R. (2005). Multiscale segmentation by combining motion and intensity cues. In Proc. conf. comp. vision pattern rec. (Vol. 1, pp. 256–263).
Golland, P., & Bruckstein, A. M. (1997). Motion from color. Computer Vision and Image Understanding, 68(3), 346–362.
Hildreth, E. C. (1987). The analysis of visual motion: From computational theory to neural mechanisms. Annual Review of Neuroscience, 10, 477–533.
Horn, B. K. P. (1986). Robot vision. New York: McGraw-Hill.
Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185–203.
Lu, Z., Xie, W., Pei, J., & Huang, J. (2005). Dynamic texture recognition by spatiotemporal multiresolution histograms. In Proc. of the IEEE workshop on motion and video computing (WACV/MOTION) (pp. 241–246).
Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In DARPA image understanding workshop (pp. 121–130).
Mileva, Y., Bruhn, A., & Weickert, J. (2007). Illumination-robust variational optical flow with photometric invariants. In LNCS : Vol. 4713. DAGM-Symposium (pp. 152–162). Berlin: Springer.
Mumford, D., & Shah, J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42, 577–685.
Murray, D. W., & Buxton, B. F. (1987). Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2), 220–228.
Nelson, R. C., & Polana, R. (1992). Qualitative recognition of motion using temporal texture. CVGIP: Image Understanding, 56, 78–89.
Nir, T., Bruckstein, A. M., & Kimmel, R. (2008). Over-parameterized variational optical flow. International Journal of Computer Vision, 76(2), 205–216.
Ohta, N. (1989). Optical flow detection by color images. In IEEE int. conf. on image processing (pp. 801–805).
Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 12–49.
Otsu, N. (1979). A threshold selection method from gray level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9, 62–66.
Otsuka, K., Horikoshi, T., Suzuki, S., & Fujii, M. (1998). Feature extraction of temporal texture based on spatiotemporal motion trajectory. In Proc. int. conf. pattern recognition (Vol. 2, pp. 1047–1051).
Papenberg, N., Bruhn, A., Brox, T., Didas, S., & Weickert, J. (2006). Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision, 67(2), 141–158.
Paragios, N., & Deriche, R. (2005). Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding, 97(3), 259–282.
Peh, C. H., & Cheong, L.-F. (2002). Synergizing spatial and temporal texture. IEEE Transactions on Image Processing, 11, 1179–1191.
Péteri, R., & Chetverikov, D. (2005). Dynamic texture recognition using normal flow and texture regularity. In LNCS (Vol. 3523, pp. 223–230). Berlin: Springer.
Péteri, R., Huskies, M., & Fazekas, S. (2006). DynTex: A comprehensive database of Dynamic Textures. http://www.cwi.nl/projects/dyntex.
Saisan, P., Doretto, G., Wu, Y. N., & Soatto, S. (2001). Dynamic texture recognition. In Proc. conf. comp. vision pattern rec. (Vol. 2, pp. 58–63). Kauai, Hawaii.
Schnörr, C. (1984). Segmentation of visual motion by minimizing convex non-quadratic functionals. In Proc. int. conf. pattern recognition (pp. 661–663).
Schoenemann, T., & Cremers, D. (2006). Near real-time motion segmentation using graph cuts. In LNCS (Vol. 4174, pp. 455–464). Berlin: Springer.
Schunck, B. G. (1984). The motion constraints equation for optical flow. In Proc. int. conf. pattern recognition (Vol. 1, pp. 20–22).
Shi, J., & Malik, J. (1998). Motion segmentation and tracking using normalized cuts. In Sixth int. conf. on computer vision (pp. 1154–1160).
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.
Smith, J., Lin, C.-Y., & Naphade, M. (2002). Video texture indexing using spatiotemporal wavelets. In Proc. int. conf. on image processing (Vol. 2, pp. 437–440).
Soatto, S., Doretto, G., & Wu, Y. (2001). Dynamic textures. In Eigth int. conf. on computer vision (Vol. 2, pp. 439–446).
Song, S., & Leahy, R. M. (1991). Computation of 3d velocity fields from 3d cine images of a beating heart. IEEE Transactions on Medical Imaging, 1, 462–472.
Sundaramoorthi, G., Yezzi, A., Mennucci, A. C., & Sapiro, G. (2007). New possibilities with Sobolev active contours. In LNCS : Vol. 4485. Proc. SSVM 2007 (pp. 153–164). Berlin: Springer.
Szummer, M., & Picard, R. (1996). Temporal texture modeling. In Proc. int. conf. image processing (Vol. 3, pp. 823–826).
Todorovic, D. (1996). A gem from the past: Pleikart Stumpf’s anticipation of the aperture problem, Reichardt detectors, and perceived motion loss at equiluminance. Perception, 25, 1235–1242.
Uras, S., Girosi, F., Verri, A., & Torre, V. (1988). A computational approach to motion perception. Biological Cybernetics, 60, 79–97.
Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3), 271–293.
Wang, J. Y. A., & Adelson, E. H. (1994). Representing moving images with layers. IEEE Transactions on Image Processing, 3(5), 625–638.
Wildes, R. P., & Bergen, J. R. (2000). Qualitative spatiotemporal analysis using an oriented energy representation. In LNCS : Vol. 1843. Proc. European conf. on computer vision (pp. 768–784). Berlin: Springer.
Wu, P., Ro, Y. M., Won, C. S., & Choi, Y. (2001). Texture descriptors in MPEG-7. In LNCS (Vol. 2124, pp. 21–28). Berlin: Springer.
Yuan, L., Weng, F., Liu, C., & Shum, H.-Y. (2004). Synthersizing dynamic texture with closed-loop linear dynamic system. In LNCS : Vol. 3022. Proc. European conf. on computer vision (pp. 603–616). Berlin: Springer.
Zheng, H., & Blostein, S. D. (1995). Motion-based object segmentation and estimation using the MDL principle. IEEE Transactions on Image Processing, 4(9), 1223–1235.
Zhong, J., & Scarlaroff, S. (2002). Temporal texture recongnition model using 3D features (Technical report). MIT Media Lab Perceptual Computing.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fazekas, S., Amiaz, T., Chetverikov, D. et al. Dynamic Texture Detection Based on Motion Analysis. Int J Comput Vis 82, 48–63 (2009). https://doi.org/10.1007/s11263-008-0184-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-008-0184-y