[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dynamic Texture Detection Based on Motion Analysis

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Motion estimation is usually based on the brightness constancy assumption. This assumption holds well for rigid objects with a Lambertian surface, but it is less appropriate for fluid and gaseous materials. For these materials an alternative assumption is required. This work examines three possible alternatives: gradient constancy, color constancy and brightness conservation (under this assumption the brightness of an object can diffuse to its neighborhood). Brightness conservation and color constancy are found to be adequate models. We propose a method for detecting regions of dynamic texture in image sequences. Accurate segmentation into regions of static and dynamic texture is achieved using a level set scheme. The level set function separates each image into regions that obey brightness constancy and regions that obey the alternative assumption. We show that the method can be simplified to obtain a less robust but fast algorithm, capable of real-time performance. Experimental results demonstrate accurate segmentation by the full level set scheme, as well as by the simplified method. The experiments included challenging image sequences, in which color or geometry cues by themselves would be insufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amiaz, T., & Kiryati, N. (2006). Piecewise-smooth dense optical flow via level sets. International Journal of Computer Vision, 68(2), 111–124.

    Article  Google Scholar 

  • Amiaz, T., Fazekas, S., Chetverikov, D., & Kiryati, N. (2007). Detecting regions of dynamic texture. In LNCS : Vol. 4485. Proc. SSVM 2007 (pp. 848–859). Berlin: Springer.

    Google Scholar 

  • Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2(3), 283–310.

    Article  Google Scholar 

  • Béréziat, D., Herlin, I., & Younes, L. (2000). A generalized optical flow constraint and its physical interpretation. In Proc. conf. comp. vision pattern rec. (pp. 487–492).

  • Black, M. J., & Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1), 75–104.

    Article  Google Scholar 

  • Bouthemy, P., & Fablet, R. (1998). Motion characterization from temporal co-occurrences of local motion-based measures for video indexing. In Proc. int. conf. pattern recognition (Vol. 1, pp. 905–908).

  • Boykov, Y. Y., & Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In 8th int. conf. on computer vision (Vol. 01, pp. 105–112).

  • Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In LNCS : Vol. 3024. Proc. European conf. on computer vision (pp. 25–36). Berlin: Springer.

    Google Scholar 

  • Brox, T., Bruhn, A., & Weickert, J. (2006). Variational motion segmentation with level sets. In LNCS : Vol. 3951. Proc. European conf. on computer vision (pp. 471–483). Berlin: Springer.

    Google Scholar 

  • Bruce, V., Green, P. R., & Georgeson, M. (1996). Visual perception. Psychology Press.

  • Burnham, K., & Anderson, D. (1998). Model selection and inference—a practical information-theoretic approach. Berlin: Springer.

    MATH  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79.

    Article  MATH  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chetverikov, D., & Péteri, R. (2005). A brief survey of dynamic texture description and recognition. In 4th int. conf. on computer recognition systems (pp. 17–26).

  • Corpetti, T., Mémin, E., & Pérez, P. (2000). Adaptation of standard optic methods to fluid motion. In Int. symposium on flow visualization (pp. 1–10).

  • Cremers, D., & Soatto, S. (2004). Motion competition: A variational approach to piecewise parametric motion segmentation. International Journal of Computer Vision, 62(3), 249–265.

    Article  Google Scholar 

  • Cuzol, A., & Mémin, E. (2005). Vortex and source particles for fluid motion estimation. In LNCS : Vol. 3459. Proc. scale-space 2005 (pp. 254–266). Berlin: Springer.

    Google Scholar 

  • Cuzol, A., Hellier, P., & Mémin, E. (2007). A low dimensional fluid motion estimator. International Journal of Computer Vision, 75(3), 329–349.

    Article  Google Scholar 

  • Dervieux, A., & Thomasset, F. (1979). A finite element method for the simulation of rayleigh-Taylor instability. In Lecture notes in mathematics (Vol. 771, pp. 145–158).

  • Doretto, G., Chiuso, A., Soatto, S., & Wu, Y. N. (2003a). Dynamic textures. International Journal of Computer Vision, 51, 91–109.

    Article  MATH  Google Scholar 

  • Doretto, G., Cremers, D., Favaro, P., & Soatto, S. (2003b). Dynamic texture segmentation. In Ninth int. conf. on computer vision (p. 1236).

  • Doretto, G., Jones, E., & Soatto, S. (2004). Spatially homogeneous dynamic textures. In LNCS : Vol. 3022. Proc. European conf. on computer vision (pp. 591–602). Berlin: Springer.

    Google Scholar 

  • Fablet, R., & Bouthemy, P. (2003). Motion recognition using nonparametric image motion models estimated from temporal and multiscale co-occurrence statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 1619–1624.

    Article  Google Scholar 

  • Fazekas, S., Amiaz, T., Chetverikov, D., & Kiryati, N. (2007). Dynamic texture detection and segmentation. http://vision.sztaki.hu/~fazekas/dtsegm.

  • Fazekas, S., & Chetverikov, D. (2005). Normal versus complete flow in dynamic texture recognition: A comparative study. In Int. workshop on texture analysis and synthesis (pp. 37–42).

  • Fazekas, S., & Chetverikov, D. (2007). Analysis and performance evaluation of optical flow features for dynamic texture recognition. Signal Processing: Image Communication, 22, 680–691. Special issue on Content-Based Multimedia Indexing.

    Article  Google Scholar 

  • Fujita, K., & Nayar, S. (2003). Recognition of dynamic textures using impulse responses of state variables. In Int. workshop on texture analysis and synthesis (pp. 31–36).

  • Galun, M., Apartsin, A., & Basri, R. (2005). Multiscale segmentation by combining motion and intensity cues. In Proc. conf. comp. vision pattern rec. (Vol. 1, pp. 256–263).

  • Golland, P., & Bruckstein, A. M. (1997). Motion from color. Computer Vision and Image Understanding, 68(3), 346–362.

    Article  Google Scholar 

  • Hildreth, E. C. (1987). The analysis of visual motion: From computational theory to neural mechanisms. Annual Review of Neuroscience, 10, 477–533.

    Article  Google Scholar 

  • Horn, B. K. P. (1986). Robot vision. New York: McGraw-Hill.

    Google Scholar 

  • Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185–203.

    Article  Google Scholar 

  • Lu, Z., Xie, W., Pei, J., & Huang, J. (2005). Dynamic texture recognition by spatiotemporal multiresolution histograms. In Proc. of the IEEE workshop on motion and video computing (WACV/MOTION) (pp. 241–246).

  • Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In DARPA image understanding workshop (pp. 121–130).

  • Mileva, Y., Bruhn, A., & Weickert, J. (2007). Illumination-robust variational optical flow with photometric invariants. In LNCS : Vol. 4713. DAGM-Symposium (pp. 152–162). Berlin: Springer.

    Google Scholar 

  • Mumford, D., & Shah, J. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42, 577–685.

    Article  MATH  MathSciNet  Google Scholar 

  • Murray, D. W., & Buxton, B. F. (1987). Scene segmentation from visual motion using global optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2), 220–228.

    Article  Google Scholar 

  • Nelson, R. C., & Polana, R. (1992). Qualitative recognition of motion using temporal texture. CVGIP: Image Understanding, 56, 78–89.

    Article  MATH  Google Scholar 

  • Nir, T., Bruckstein, A. M., & Kimmel, R. (2008). Over-parameterized variational optical flow. International Journal of Computer Vision, 76(2), 205–216.

    Article  Google Scholar 

  • Ohta, N. (1989). Optical flow detection by color images. In IEEE int. conf. on image processing (pp. 801–805).

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9, 62–66.

    Article  Google Scholar 

  • Otsuka, K., Horikoshi, T., Suzuki, S., & Fujii, M. (1998). Feature extraction of temporal texture based on spatiotemporal motion trajectory. In Proc. int. conf. pattern recognition (Vol. 2, pp. 1047–1051).

  • Papenberg, N., Bruhn, A., Brox, T., Didas, S., & Weickert, J. (2006). Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision, 67(2), 141–158.

    Article  Google Scholar 

  • Paragios, N., & Deriche, R. (2005). Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding, 97(3), 259–282.

    Article  Google Scholar 

  • Peh, C. H., & Cheong, L.-F. (2002). Synergizing spatial and temporal texture. IEEE Transactions on Image Processing, 11, 1179–1191.

    Article  MathSciNet  Google Scholar 

  • Péteri, R., & Chetverikov, D. (2005). Dynamic texture recognition using normal flow and texture regularity. In LNCS (Vol. 3523, pp. 223–230). Berlin: Springer.

    Google Scholar 

  • Péteri, R., Huskies, M., & Fazekas, S. (2006). DynTex: A comprehensive database of Dynamic Textures. http://www.cwi.nl/projects/dyntex.

  • Saisan, P., Doretto, G., Wu, Y. N., & Soatto, S. (2001). Dynamic texture recognition. In Proc. conf. comp. vision pattern rec. (Vol. 2, pp. 58–63). Kauai, Hawaii.

  • Schnörr, C. (1984). Segmentation of visual motion by minimizing convex non-quadratic functionals. In Proc. int. conf. pattern recognition (pp. 661–663).

  • Schoenemann, T., & Cremers, D. (2006). Near real-time motion segmentation using graph cuts. In LNCS (Vol. 4174, pp. 455–464). Berlin: Springer.

    Google Scholar 

  • Schunck, B. G. (1984). The motion constraints equation for optical flow. In Proc. int. conf. pattern recognition (Vol. 1, pp. 20–22).

  • Shi, J., & Malik, J. (1998). Motion segmentation and tracking using normalized cuts. In Sixth int. conf. on computer vision (pp. 1154–1160).

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Smith, J., Lin, C.-Y., & Naphade, M. (2002). Video texture indexing using spatiotemporal wavelets. In Proc. int. conf. on image processing (Vol. 2, pp. 437–440).

  • Soatto, S., Doretto, G., & Wu, Y. (2001). Dynamic textures. In Eigth int. conf. on computer vision (Vol. 2, pp. 439–446).

  • Song, S., & Leahy, R. M. (1991). Computation of 3d velocity fields from 3d cine images of a beating heart. IEEE Transactions on Medical Imaging, 1, 462–472.

    Google Scholar 

  • Sundaramoorthi, G., Yezzi, A., Mennucci, A. C., & Sapiro, G. (2007). New possibilities with Sobolev active contours. In LNCS : Vol. 4485. Proc. SSVM 2007 (pp. 153–164). Berlin: Springer.

    Google Scholar 

  • Szummer, M., & Picard, R. (1996). Temporal texture modeling. In Proc. int. conf. image processing (Vol. 3, pp. 823–826).

  • Todorovic, D. (1996). A gem from the past: Pleikart Stumpf’s anticipation of the aperture problem, Reichardt detectors, and perceived motion loss at equiluminance. Perception, 25, 1235–1242.

    Article  Google Scholar 

  • Uras, S., Girosi, F., Verri, A., & Torre, V. (1988). A computational approach to motion perception. Biological Cybernetics, 60, 79–97.

    Article  Google Scholar 

  • Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3), 271–293.

    Article  MATH  Google Scholar 

  • Wang, J. Y. A., & Adelson, E. H. (1994). Representing moving images with layers. IEEE Transactions on Image Processing, 3(5), 625–638.

    Article  Google Scholar 

  • Wildes, R. P., & Bergen, J. R. (2000). Qualitative spatiotemporal analysis using an oriented energy representation. In LNCS : Vol. 1843. Proc. European conf. on computer vision (pp. 768–784). Berlin: Springer.

    Google Scholar 

  • Wu, P., Ro, Y. M., Won, C. S., & Choi, Y. (2001). Texture descriptors in MPEG-7. In LNCS (Vol. 2124, pp. 21–28). Berlin: Springer.

    Google Scholar 

  • Yuan, L., Weng, F., Liu, C., & Shum, H.-Y. (2004). Synthersizing dynamic texture with closed-loop linear dynamic system. In LNCS : Vol. 3022. Proc. European conf. on computer vision (pp. 603–616). Berlin: Springer.

    Google Scholar 

  • Zheng, H., & Blostein, S. D. (1995). Motion-based object segmentation and estimation using the MDL principle. IEEE Transactions on Image Processing, 4(9), 1223–1235.

    Article  Google Scholar 

  • Zhong, J., & Scarlaroff, S. (2002). Temporal texture recongnition model using 3D features (Technical report). MIT Media Lab Perceptual Computing.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Amiaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazekas, S., Amiaz, T., Chetverikov, D. et al. Dynamic Texture Detection Based on Motion Analysis. Int J Comput Vis 82, 48–63 (2009). https://doi.org/10.1007/s11263-008-0184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0184-y

Keywords

Navigation