[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Extensions on Low-Complexity DCT Approximations for Larger Blocklengths Based on Minimal Angle Similarity

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Loéve transform (KLT), which is the optimal transform in terms of retained transform coefficients and data decorrelation. In this paper, we introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms. According to some classical figures of merit, the proposed transforms outperformed the approximations for the DCT already known in the literature. Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost. Practical applications in image encoding showed the relevance of the transforms in this context. In fact, the experiments showed that the proposed transforms had better results than the known approximations in the literature for the cases of 16, 32, and 64 blocklength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Van der Perre, L., Liu, L., & Larsson, E. G. (2018). Efficient DSP and circuit architectures for massive MIMO: State of the art and future directions. IEEE Transactions on Signal Processing, 66(18), 4717–4736. https://doi.org/10.1109/TSP.2018.2858190

    Article  MathSciNet  MATH  Google Scholar 

  2. Domouchtsidis, S., Tsinos, C. G., Chatzinotas, S., & Ottersten, B. (2019). Symbol-level precoding for low complexity transmitter architectures in large-scale antenna array systems. IEEE Transactions on Wireless Communications, 18(2), 852–863. https://doi.org/10.1109/TWC.2018.2885525

    Article  Google Scholar 

  3. Ibhaze, A. E., Orukpe, P. E., & Edeko, F. O. (2020). High capacity data rate system: Review of visible light communications technology. Journal of Electronic Science and Technology, 18(3), 100055. https://doi.org/10.1016/j.jnlest.2020.100055

    Article  Google Scholar 

  4. Zhang, L., Li, W., Wu, Y., Lafleche, S., Hong, Z., Park, S.-I., Lee, J.-Y., Kim, H.-M., Hur, N., Iradier, E., Angueira, P., & Montalban, J. (2021). Using layered division multiplexing for wireless in-band distribution links in next generation broadcast systems. IEEE Transactions on Broadcasting, 67(1), 68–82. https://doi.org/10.1109/TBC.2020.2989638

    Article  Google Scholar 

  5. Gonzalez, R. C., & Woods, R. E. (2012). Digital image processing, Upper Saddle River. NJ: Prentice Hall.

    Google Scholar 

  6. Britanak, V., Yip, P., & Rao, K. R. (2007). Discrete cosine and sine transforms. Academic Press.

  7. Ochoa-Dominguez, H., & Rao, K. R. (2019). Discrete cosine transform. CRC Press.

  8. Poularikas, A. D. (2010). Transforms and applications handbook. CRC Press.

  9. Salomon, D., Motta, G., & Bryant, D. (2007). Data compression: The complete reference. Springer.

  10. Jain, A. K. (1981). Image data compression: A review. Proceedings of the IEEE, 69(3), 349–389. https://doi.org/10.1109/PROC.1981.11971

    Article  Google Scholar 

  11. Welch, T. A. (1984). A technique for high-performance data compression. Computer, 17(6), 8–19. https://doi.org/10.1109/MC.1984.1659158

    Article  Google Scholar 

  12. Pennebaker, W. B., & Mitchell, J. L. (1992). JPEG Still Image Data Compression Standard. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  13. Jolliffe, I. (2002). Principal component analysis. Wiley Online Library.

  14. Blahut, R. E. (2010). Fast algorithms for signal processing (2nd ed.). Cambridge University Press.

  15. Wallace, G. K. (1992). The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics, 38(1), 18–34. https://doi.org/10.1109/30.125072

    Article  Google Scholar 

  16. Puri, A., Chen, X., & Luthra, A. (2004). Video coding using the H. 264/MPEG-4 AVC compression standard. Signal Processing: Image Communication, 19(9), 793–849. https://doi.org/10.1016/j.image.2004.06.003

  17. Pourazad, M. T., Doutre, C., Azimi, M., & Nasiopoulos, P. (2012). HEVC: The new gold standard for video compression: How does HEVC compare with H.264/AVC? IEEE Consumer Electronics Magazine, 1(3), 36–46. https://doi.org/10.1109/MCE.2012.2192754

  18. Ahmed, N., Natarajan, T., & Rao, K. R. (1974). Discrete cosine transform. IEEE Transactions on Computers, C-23(1), 90–93. https://doi.org/10.1109/T-C.1974.223784

  19. Clarke, R. J. (1981). Relation between the Karhunen-Loève and cosine transforms. IEEE Proceedings F Communications, Radar and Signal Processing, 128(6), 359–360. https://doi.org/10.1049/ip-f-1.1981.0061

    Article  Google Scholar 

  20. Clarke, R. (1983). Application of sine transform in image processing. Electronics Letters, 19(13), 490–491. https://doi.org/10.1049/el:19830332

    Article  Google Scholar 

  21. Rao, K. R., & Yip, P. (1990). Discrete cosine transform: Algorithms. Advantages: Applications, Academic Press, San Diego, CA.

    Book  MATH  Google Scholar 

  22. Sayood, K. (2017). Introduction to data compression. Morgan Kaufmann.

  23. Rao, K. R., & Yip, P. (2001). The transform and data compression handbook. CRC Press.

  24. Cintra, R. J., Bayer, F. M., & Tablada, C. (2014). Low-complexity 8-point DCT approximations based on integer functions. Signal Processing, 99, 201–214. https://doi.org/10.1016/j.sigpro.2013.12.027

    Article  Google Scholar 

  25. Sheltami, T., Musaddiq, M., & Shakshuki, E. (2016). Data compression techniques in wireless sensor networks. Future Generation Computer Systems, 64, 151–162. https://doi.org/10.1016/j.future.2016.01.015

    Article  Google Scholar 

  26. Haweel, T. I. (2001). A new square wave transform based on the DCT. Signal Processing, 82, 2309–2319. https://doi.org/10.1016/S0165-1684(01)00106-2

    Article  MATH  Google Scholar 

  27. Liang, J., & Tran, T. D. (2001). Fast multiplierless approximation of the DCT with the lifting scheme. IEEE Transactions on Signal Processing, 49, 3032–3044. https://doi.org/10.1117/12.411606

    Article  Google Scholar 

  28. Cintra, R. J., & Bayer, F. M. (2011). A DCT approximation for image compression. IEEE Signal Processing Letters, 18(10), 579–582. https://doi.org/10.1109/LSP.2011.2163394

    Article  Google Scholar 

  29. Bouguezel, S., Ahmad, M. O., & Swamy, M. N. S. (2008). Low-complexity 8 × 8 transform for image compression. Electronics Letters, 44(21), 1249–1250. https://doi.org/10.1049/el:20082239

    Article  Google Scholar 

  30. Bouguezel, S., Ahmad, M. O., & Swamy, M. N. S. (2010). A novel transform for image compression. In 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (pp. 509–12). https://doi.org/10.1109/MWSCAS.2010.5548745

  31. Tablada, C. J., Bayer, F. M., & Cintra, R. J. (2015). A class of DCT approximations based on the Feig-Winograd algorithm. Signal Processing, 113, 38–51. https://doi.org/10.1016/j.sigpro.2015.01.011

    Article  Google Scholar 

  32. Bayer, F. M., & Cintra, R. J. (2012). DCT-like transform for image compression requires 14 additions only. Electronics Letters, 48(15), 919–921. https://doi.org/10.1049/el.2012.1148

    Article  Google Scholar 

  33. Coutinho, V. A., Cintra, R. J., Bayer, F. M., Kulasekera, S., & Madanayake, A. (2015) A multiplier less pruned DCT-like transformation for image and video compression that requires ten additions only. Journal of Real-Time Image Processing, 1–9. https://doi.org/10.1007/s11554-015-0492-8

  34. Oliveira, R. S., Cintra, R. J., Bayer, F. M., da Silveira, T. L., Madanayake, A., & Leite, A. (2019). Low-complexity 8-point DCT approximation based on angle similarity for image and video coding. Multidimensional Systems and Signal Processing, 30(3), 1363–1394. https://doi.org/10.1007/s11045-018-0601-5

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi, Y. Q., & Sun, H. (1999). Image and video compression for multimedia engineering: Fundamentals, algorithms, and standards. CRC Press.

  36. Zhao, X., Kim, S.-H., Zhao, Y., Egilmez, H. E., Koo, M., Liu, S., Lainema, J., & Karczewicz, M. (2021). Transform coding in the VVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 31(10), 3878–3890. https://doi.org/10.1109/TCSVT.2021.3087706

    Article  Google Scholar 

  37. Bayer, F. M., Cintra, R. J., Edirisuriya, A., Madanayake, A. (2012, November). A digital hardware fast algorithm and FPGA-based prototype for a novel 16-point approximate DCT for image compression applications. Measurement Science and Technology, 23(8). https://doi.org/10.1088/0957-0233/23/11/114010

  38. da Silveira, T. L., Oliveira, R. S., Bayer, F. M., Cintra, R. J., & Madanayake, A. (2017). Multiplierless 16-point DCT approximation for low-complexity image and video coding. Signal, Image and Video Processing, 11(2), 227–233. https://doi.org/10.1007/s11760-016-0923-4

    Article  Google Scholar 

  39. Coelho, D. F., Cintra, R. J., Madanayake, A., & Perera, S. M. (2021). Low-complexity scaling methods for DCT-II approximations. IEEE Transactions on Signal Processing, 1–1. https://doi.org/10.1109/TSP.2021.3099623

  40. Canterle, D. R., da Silveira, T. L., Bayer, F. M., & Cintra, R. J. (2020). A multiparametric class of low-complexity transforms for image and video coding. Signal Processing, 176, 107685. https://doi.org/10.1016/j.sigpro.2020.107685

    Article  Google Scholar 

  41. Coelho, D. F., Cintra, R. J., & Dimitrov, V. S. (2018). Efficient computation of the 8-point DCT via summation by parts. Journal of Signal Processing Systems, 90(4), 505–514. https://doi.org/10.1007/s11265-017-1270-6

    Article  Google Scholar 

  42. Sun, H., Cheng, Z., Gharehbaghi, A. M., Kimura, S., & Fujita, M. (2019). Approximate DCT design for video encoding based on novel truncation scheme. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(4), 1517–1530. https://doi.org/10.1109/TCSI.2018.2882474

    Article  MathSciNet  MATH  Google Scholar 

  43. Zeng, Y., Sun, H., Katto, J., & Fan, Y. (2021). Approximated reconfigurable transform architecture for VVC. In 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1–5). https://doi.org/10.1109/ISCAS51556.2021.9401178

  44. Liang, W.-D., & Liu, X.-D. (2021). Comparison of approximate DCT and approximate DTT for image compression. In 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (pp. 337–41). https://doi.org/10.1109/ICBAIE52039.2021.9389991

  45. Paim, G., Fonseca, M., Costa, E., & Almeida, S. (2015). Power efficient 2-D rounded cosine transform with adder compressors for image compression. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 348–51). https://doi.org/10.1109/ICECS.2015.7440320

  46. Almurib, H. A., Kumar, T. N., & Lombardi, F. (2018). Approximate DCT image compression using inexact computing. IEEE Transactions on Computers, 67(2), 149–159. https://doi.org/10.1109/TC.2017.2731770

    Article  MathSciNet  MATH  Google Scholar 

  47. Puchala, D. (2021). Approximate calculation of 8-point DCT for various scenarios of practical applications. EURASIP Journal on Image and Video Processing, 2021(1), 1–34. https://doi.org/10.1186/s13640-021-00557-3

    Article  Google Scholar 

  48. Belyaev, E., Bie, L., & Korhonen, J. (2020). Motion JPEG decoding via iterative thresholding and motion-compensated deflickering. In 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP) (pp. 1–6). https://doi.org/10.1109/MMSP48831.2020.9287147

  49. Busson, A. J., Mendes, P. R., de Moraes, D. S., da Veiga, Á. M., Guedes, Á. L. V., & Colcher, S. (2020). Video quality enhancement using deep learning-based prediction models for quantized DCT coefficients in MPEG I-frames. In 2020 IEEE International Symposium on Multimedia (ISM) (pp. 29–32). https://doi.org/10.1109/ISM.2020.00012

  50. Singhadia, A., Mamillapalli, M., & Chakrabarti, I. (2020). Hardware-efficient 2D-DCT/IDCT architecture for portable HEVC-compliant devices. IEEE Transactions on Consumer Electronics, 66(3), 203–212. https://doi.org/10.1109/TCE.2020.3006213

    Article  Google Scholar 

  51. Masera, M., Masera, G., & Martina, M. (2020). An area-efficient variable-size fixed-point DCT architecture for HEVC encoding. IEEE Transactions on Circuits and Systems for Video Technology, 30(1), 232–242. https://doi.org/10.1109/TCSVT.2018.2886736

    Article  Google Scholar 

  52. Maher, J., & Meher, P. K. (2017). Scalable approximate DCT architectures for efficient HEVC-compliant video coding. IEEE Transactions on Circuits and Systems for Video Technology, 27(8), 1815–1825. https://doi.org/10.1109/TCSVT.2016.2556578

    Article  Google Scholar 

  53. Suresh, H., Hegde, S., & Sartori, J. (2017). Approximate compression: Enhancing compressibility through data approximation. In Proceedings of the 15th IEEE/ACM Symposium on Embedded Systems for Real-Time Multimedia (pp. 41–50). https://doi.org/10.1145/3139315.3139319

  54. Sidaty, N., Hamidouche, W., Déforges, O., Philippe, P., & Fournier, J. (2019). Compression performance of the versatile video coding: HD and UHD visual quality monitoring. In 2019 Picture Coding Symposium (PCS) (pp. 1–5). https://doi.org/10.1109/PCS48520.2019.8954562

  55. Dong, J., Ngan, K. N., Fong, C.-K., & Cham, W.-K. (2009). 2-D order-16 integer transforms for HD video coding. IEEE Transactions on Circuits and Systems for Video Technology, 19(10), 1462–1474. https://doi.org/10.1109/TCSVT.2009.2026792

    Article  Google Scholar 

  56. Thiripurasundari, C., Sumathy, V., & Thiruvengadam, C. (2018). An FPGA implementation of novel smart antenna algorithm in tracking systems for smart cities. Computers & Electrical Engineering, 65, 59–66. https://doi.org/10.1016/j.compeleceng.2017.06.009

    Article  Google Scholar 

  57. Madanayake, A., Cintra, R. J., Dimitrov, V., Bayer, F., Wahid, K. A., Kulasekera, S., Edirisuriya, A., Potluri, U., Madishetty, S., & Rajapaksha, N. (2015). Low-power VLSI architectures for DCT/DWT: Precision vs approximation for HD video, biomedical, and smart antenna applications. IEEE Circuits and Systems Magazine, 15(1), 25–47. https://doi.org/10.1109/MCAS.2014.2385553

    Article  Google Scholar 

  58. Rajapaksha, N., Edirisuriya, A., Madanayake, A., Cintra, R. J., Onen, D., Amer, I., & Dimitrov, V. S. (2013). Asynchronous realization of algebraic integer-based 2D DCT using Achronix Speedster SPD60 FPGA. Journal of Electrical and Computer Engineering, 2013, 1–9. https://doi.org/10.1155/2013/834793

    Article  Google Scholar 

  59. Madishetty, S. K., Madanayake, A., Cintra, R. J., Dimitrov, V. S., & Mugler, D. H. (2012). VLSI architectures for the 4-tap and 6-tap 2-D daubechies wavelet filters using algebraic integers. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(6), 1455–1468. https://doi.org/10.1109/TCSI.2012.2221171

    Article  MathSciNet  MATH  Google Scholar 

  60. Haghighat, M. B. A., Aghagolzadeh, A., & Seyedarabi, H. (2011). Multi-focus image fusion for visual sensor networks in DCT domain. Computers & Electrical Engineering, 37(5), 789–797. https://doi.org/10.1016/j.compeleceng.2011.04.016

    Article  MATH  Google Scholar 

  61. Liang, Y., Liu, G., Zhou, N., & Wu, J. (2015). Image encryption combining multiple generating sequences controlled fractional DCT with dependent scrambling and diffusion. Journal of Modern Optics, 62(4), 251–264. https://doi.org/10.1080/09500340.2014.964342

    Article  Google Scholar 

  62. Wahid, K., Ko, S.-B., & Teng, D. (2008). Efficient hardware implementation of an image compressor for wireless capsule endoscopy applications. In 2008 IEEE International Joint Conference on Neural Networks (pp. 2761–2765). IEEE. https://doi.org/10.1109/IJCNN.2008.4634186

  63. Wahid, K. A., Islam, M. A., & Ko, S.-B. (2011). Lossless implementation of Daubechies 8-tap wavelet transform. In 2011 IEEE International Symposium of Circuits and Systems (pp. 2157–2160). IEEE. https://doi.org/10.1109/ISCAS.2011.5938026

  64. Chiper, D. F., & Cotorobai, L. T. (2020). A novel VLSI algorithm for a low complexity VLSI implementation of DCT based on pseudo circular correlation structures. In 2020 International Symposium on Electronics and Telecommunications (pp. 1–4). https://doi.org/10.1109/ISETC50328.2020.9301043

  65. Chung, R.-L., Chen, C.-W., Chen, C.-A., Abu, P. A. R., & Chen, S.-L. (2021). VLSI implementation of a cost-efficient Loeffler DCT algorithm with recursive CORDIC for DCT-based encoder. Electronics, 10(7), 862. https://doi.org/10.3390/electronics10070862

    Article  Google Scholar 

  66. Hsiao, S.-F., Hu, Y. H., Juang, T.-B., & Lee, C.-H. (2005). Efficient VLSI implementations of fast multiplierless approximated DCT using parameterized hardware modules for silicon intellectual property design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(8), 1568–1579. https://doi.org/10.1109/TCSI.2005.851709

    Article  MathSciNet  MATH  Google Scholar 

  67. SenthilPari, C., Nirmal Raj, M. I. T., Kumar, P. V., & Francisca, J. S. (2018). Design a low voltage amp; low power multiplier-free pipelined DCT architecture using hybrid full adder. In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1–6). https://doi.org/10.1109/ICETAS.2018.8629129

  68. Saponara, S. (2012). Real-time and low-power processing of 3D direct/inverse discrete cosine transform for low-complexity video codec. Journal of Real-Time Image Processing, 7(1), 43–53. https://doi.org/10.1007/s11554-010-0174-5

    Article  Google Scholar 

  69. Bahar, A. N., & Wahid, K. A. (2020). Design and implementation of approximate DCT architecture in quantum-dot cellular automata. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(12), 2530–2539. https://doi.org/10.1109/TVLSI.2020.3013724

  70. Lee, D.-U., Kim, H., Rahimi, M., Estrin, D., & Villasenor, J. D. (2009). Energy-efficient image compression for resource-constrained platforms. IEEE Transactions on Image Processing, 18(9), 2100–2113. https://doi.org/10.1109/TIP.2009.2022438

    Article  MathSciNet  MATH  Google Scholar 

  71. Mechouek, K., Kouadria, N., Doghmane, N., & Kaddeche, N. (2016). Low complexity DCT approximation for image compression in wireless image sensor networks  Journal of Circuits Systems and Computers, 25(08), 1650088. https://doi.org/10.1142/S0218126616500882

    Article  Google Scholar 

  72. Zidani, N., Kouadria, N., Doghmane, N. & Harize, S. (2019). Low complexity pruned DCT approximation for image compression in wireless multimedia sensor networks. In 2019 5th International Conference on Frontiers of Signal Processing (ICFSP) (pp. 26–30). https://doi.org/10.1109/ICFSP48124.2019.8938063

  73. Ma, S., & Ampadu, P. (2019). Approximate memory with approximate DCT. In Proceedings of the 2019 on Great Lakes Symposium on VLSI (pp. 355–358). https://doi.org/10.1145/3299874.3318036

  74. Campobello, G., Segreto, A., Zanafi, S., & Serrano, S. (2017) RAKE: a simple and efficient lossless compression algorithm for the internet of things. In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 2581–5). https://doi.org/10.23919/EUSIPCO.2017.8081677

  75. Hamza, R., Hassan, A., & Patil, A. S. (2019). A lightweight secure IoT surveillance framework based on DCT-DFRT algorithms. In International Conference on Machine Learning for Cyber Security (pp. 271–8). Springer. https://doi.org/10.1007/978-3-030-30619-9_19

  76. Ma, Z., Hu, T., Shen, L., Kong, W., & Zhao, B. (2015). A detection and relative direction estimation method for UAV in sense-and-avoid. In 2015 IEEE International Conference on Information and Automation (pp. 2677–2682). https://doi.org/10.1109/ICInfA.2015.7279738

  77. Margelis, G., Fafoutis, X., Oikonomou, G., Piechocki, R., Tryfonas, T., & Thomas, P. (2019). Efficient DCT-based secret key generation for the internet of things. Ad Hoc Networks, 92, 101744. https://doi.org/10.1016/j.adhoc.2018.08.014

    Article  Google Scholar 

  78. Kansal, L., Gaba, G. S., Chilamkurti, N., & Kim, B.-G. (2021). Efficient and robust image communication techniques for 5G applications in smart cities. Energies, 14(13), 3986. https://doi.org/10.3390/en14133986

    Article  Google Scholar 

  79. Potluri, U., Madanayake, A., Cintra, R., Bayer, F., & Rajapaksha, N. (2012). Multiplier-free DCT approximations for RF multi-beam digital aperture-array space imaging and directional sensing. Measurement Science and Technology, 23(11), 114003. https://doi.org/10.1088/0957-0233/23/11/114003

    Article  Google Scholar 

  80. Kulasekera, S., Madanayake, A., Suarez, D., Cintra, R. J., & Bayer, F. M. (2015). Multi-beam receiver apertures using multiplierless 8-point approximate DFT. In 2015 IEEE Radar Conference (RadarCon) (pp. 1244–9). IEEE. https://doi.org/10.1109/RADAR.2015.7131185

  81. Zhang, J., Shi, W., Zhou, L., Gong, R., Wang, L., & Zhou, H. (2019). A low-power and high-PSNR unified DCT/IDCT architecture based on EARC and enhanced scale factor approximation. IEEE Access, 7, 165684–165691. https://doi.org/10.1109/ACCESS.2019.2951408

    Article  Google Scholar 

  82. Madanayake, A., Cintra, R. J., Akram, N., Ariyarathna, V., Mandal, S., Coutinho, V. A., Bayer, F. M., Coelho, D., & Rappaport, T. S. (2020). Fast radix-32 approximate DFTs for 1024-beam digital RF beamforming. IEEE Access, 8, 96613–96627. https://doi.org/10.1109/ACCESS.2020.2994550

    Article  Google Scholar 

  83. Jain, R., & Jain, P. (2021). FPGA implementation of recursive algorithm of DCT. In Proceedings of International Conference on Artificial Intelligence and Applications (pp. 203–12). Springer. https://doi.org/10.1007/978-981-15-4992-2_20

  84. Escobar, R. V., Patiño, A. M., Moreno, I. M., Ramírez, M. G., Archundia, E. R., & Gnecchi, J. A. G. (2020). Evaluation and comparison of DCT approximations on FPGA for hardware reduction. In 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (Vol. 4, pp. 1–5). https://doi.org/10.1109/ROPEC50909.2020.9258670

  85. Tsounis, I., Papadimitriou, A., & Psarakis, M. (2021). Analyzing the impact of approximate adders on the reliability of FPGA accelerators, in. IEEE European Test Symposium, 2021, 1–2. https://doi.org/10.1109/ETS50041.2021.9465468

    Article  Google Scholar 

  86. Higham, N. J. (2008). Functions of matrices: Theory and computation. SIAM.

  87. Flury, B., & Gautschi, W. (1986). An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form. SIAM Journal on Scientific and Statistical Computing, 7(1), 169–184. https://doi.org/10.1137/0907013

    Article  MathSciNet  MATH  Google Scholar 

  88. Bouguezel, S., Ahmad, M. O., & Swamy, M. (2011). A low-complexity parametric transform for image compression, in. IEEE International Symposium of Circuits and Systems, 2011, 2145–2148. https://doi.org/10.1109/ISCAS.2011.5938023

    Article  Google Scholar 

  89. Lengwehasatit, K., & Ortega, A. (2004). Scalable variable complexity approximate forward DCT. IEEE Transactions on Circuits and Systems for Video Technology, 14(11), 1236–1248. https://doi.org/10.1109/TCSVT.2004.835151

    Article  Google Scholar 

  90. Feig, E., & Winograd, S. (1992). Fast algorithms for the discrete cosine transform. IEEE Transactions on Signal Processing, 40(9), 2174–2193. https://doi.org/10.1109/78.157218

    Article  MATH  Google Scholar 

  91. Bouguezel, S., Ahmad, M. O., & Swamy, M. (2008). A multiplication-free transform for image compression. In 2008 2nd International Conference on Signals, Circuits and Systems (pp. 1–4). https://doi.org/10.1109/ICSCS.2008.4746898

  92. Bouguezel, S., Ahmad, M. O., & Swamy, M. N. S. (2009). A fast 8 \(\times\) 8 transform for image compression. In International Conference on Microelectronics (pp. 74–7). https://doi.org/10.1109/ICM.2009.5418584

  93. Haweel, R. T., El-Kilani, W. S., & Ramadan, H. H. (2016). Fast approximate DCT with GPU implementation for image compression. Journal of Visual Communication and Image Representation, 40, 357–365. https://doi.org/10.1016/j.jvcir.2016.07.003

    Article  Google Scholar 

  94. Senapati, R. K., Pati, U. C., & Mahapatra, K. K. (2010). A low complexity orthogonal \(8\times 8\) transform matrix for fast image compression. Proceeding of the Annual IEEE India Conference (INDICON), Kolkata, India (pp. 1–4). https://doi.org/10.1109/INDCON.2010.5712707

  95. Potluri, U. S., Madanayake, A., Cintra, R. J., Bayer, F. M., Kulasekera, S., & Edirisuriya, A. (2014). Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(6), 1727–1740. https://doi.org/10.1109/TCSI.2013.2295022

    Article  Google Scholar 

  96. Mardia, K., & Jupp, P. (2009). Directional Statistics. Wiley Series in Probability and Statistics, Wiley.

  97. Jammalamadaka, S., & Sengupta, A. (2001). Topics in Circular Statistics (Vol. 5). Series on Multivariate Analysis. World Scientific.

  98. Strang, G. (1988). Linear algebra and its applications. Brooks Cole.

  99. Seber, G. A. (2008). A matrix handbook for statisticians (Vol. 15). John Wiley & Sons.

  100. Maher, J., Alfalou, A., & Meher, P. K. (2014). A generalized algorithm and reconfigurable architecture for efficient and scalable orthogonal approximation of DCT. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(2), 449–457. https://doi.org/10.1109/TCSI.2014.2360763

    Article  Google Scholar 

  101. Bartle, R. G., & Sherbert, D. R. (2000). Introduction to real analysis (Vol. 2). New York: Wiley.

    MATH  Google Scholar 

  102. Katto, J., & Yasuda, Y. (1991). Performance evaluation of subband coding and optimization of its filter coefficients. Journal of Visual Communication and Image Representation, 2(4), 303–313. https://doi.org/10.1016/1047-3203(91)90011-4

    Article  Google Scholar 

  103. Hou, H. S. (1987). A fast recursive algorithm for computing the discrete cosine transform. IEEE Transactions on Acoustic, Signal, and Speech Processing, 6(10), 1455–1461. https://doi.org/10.1109/TASSP.1987.1165060

    Article  Google Scholar 

  104. Yip, P., & Rao, K. (1988). The decimation-in-frequency algorithms for a family of discrete sine and cosine transforms. Circuits, Systems and Signal Processing, 7(1), 3–19. https://doi.org/10.1007/BF01600005

    Article  MathSciNet  MATH  Google Scholar 

  105. Oppenheim, A. V. (1999). Discrete-time signal processing (3rd ed.). Pearson Education India.

  106. Levitin, A. (2008). Introduction to design and analysis of algorithms, 2/E. Pearson Education India.

  107. USC-SIPI. (2017). The USC-SIPI image database. Retrieved May 12, 2020, from http://sipi.usc.edu/database/

  108. Suzuki, T., & Ikehara, M. (2010). Integer DCT based on direct-lifting of DCT-IDCT for lossless-to-lossy image coding. IEEE Transactions on Image Processing, 19(11), 2958–2965. https://doi.org/10.1109/TIP.2010.2051867

    Article  MathSciNet  MATH  Google Scholar 

  109. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  110. Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 26(1), 98–117. https://doi.org/10.1109/MSP.2008.930649

    Article  Google Scholar 

  111. Dummit, D. S., & Foote, R. M. (2004). Abstract algebra (Vol. 3). Wiley Hoboken.

  112. Zassenhaus H. J. (2013). The theory of groups. Courier Corporation.

  113. Rotman J. J. (2012). An introduction to the theory of groups (Vol. 148). Springer Science & Business Media.

Download references

Acknowledgements

We gratefully acknowledge partial financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo a Ciência e Tecnologia de Pernambuco (FACEPE), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Anabeth P. Radünz: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing - original draft, Visualization. Luan Portella: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing - original draft, Visualization. Raiza S. Oliveira: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Visualization. Fábio M. Bayer: Conceptualization, Methodology, Validation, Investigation, Project administration, Supervision, Writing - review & editing. Renato J. Cintra: Conceptualization, Methodology, Validation, Investigation, Project administration, Supervision, Writing - review & editing.

Corresponding author

Correspondence to Anabeth P. Radünz.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Matrix Factorization

Appendix. Matrix Factorization

The matrices used in the Section 5.4 are detailed here. First, consider the following butterfly-structure:

$$\begin{aligned} \mathbf {B}_{N}= \begin{bmatrix} {\mathbf {I}}_{\frac{N}{2}}&{}\bar{\mathbf {I}}_{\frac{N}{2}}\\ -\bar{\mathbf {I}}_{\frac{N}{2}}&{}{\mathbf {I}}_{\frac{N}{2}} \end{bmatrix}. \end{aligned}$$

For the sake of brevity, cycle notation  [111,112,113] is used to present the permutation matrices. The resulting permutation matrix is obtained by permuting the columns of the identity matrix following the cycle mapping zero indexed.

1.1 Matrix Factorization for \(N=16\)

The low-complexity matrix \(\mathbf {T}_{16,5}\) can be represented as:

$$\begin{aligned} \mathbf {T}_{16,5}=\mathbf {P}_{16}\cdot \mathbf {M}_{16} \cdot \left[ \begin{array}{cc} \mathbf {B}_{2}&{}\\ &{}{\mathbf {I}}_{14} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{4}&{}\\ &{}{\mathbf {I}}_{12} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{8}&{}\\ &{}{\mathbf {I}}_{8} \end{array}\right] \cdot \mathbf {B}_{16} \end{aligned}$$

where

$$\begin{aligned} {\mathbf {P}}_{16}= {(1\;8)\kern 0.10em(2\;4)\kern 0.10em(3\;12\;9)\kern 0.10em(5\;6\;10)\kern 0.10em(7\;14\;13\;11)}, \end{aligned}$$
$$\begin{aligned} {\mathbf {M}}_{16}= \left[ \begin{array}{rrrrrrrrrrrrrrrr} 1 &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} -1 &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} -1 &{} -2 &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} 2 &{} -1 &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} -\frac{1}{2} &{} -1 &{} -2 &{} -2 &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} 1 &{} 2 &{} \frac{1}{2} &{} -2 &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} -2 &{} -\frac{1}{2} &{} 2 &{} -1 &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} 2 &{} -2 &{} 1 &{} -\frac{1}{2} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} -\frac{1}{4} &{} -\frac{1}{2} &{} -1 &{} -1 &{} -2 &{} -2 &{} -2 &{} -2 \\ &{} &{} &{} &{} &{} &{} &{} &{} \frac{1}{2} &{} 2 &{} 2 &{} 2 &{} 1 &{} -\frac{1}{4} &{} -1 &{} -2 \\ &{} &{} &{} &{} &{} &{} &{} &{} -1 &{} -2 &{} -1 &{} \frac{1}{2} &{} 2 &{} 2 &{} -\frac{1}{4} &{} -2 \\ &{} &{} &{} &{} &{} &{} &{} &{} 1 &{} 2 &{} -\frac{1}{2} &{} -2 &{} -\frac{1}{4} &{} 2 &{} 1 &{} -2 \\ &{} &{} &{} &{} &{} &{} &{} &{} -2 &{} -1 &{} 2 &{} \frac{1}{4} &{} -2 &{} \frac{1}{2} &{} 2 &{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} 2 &{} -\frac{1}{4} &{} -2 &{} 2 &{} -\frac{1}{2} &{} -1 &{} 2 &{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} -2 &{} 1 &{} -\frac{1}{4} &{} -1 &{} 2 &{} -2 &{} 2 &{} -\frac{1}{2} \\ &{} &{} &{} &{} &{} &{} &{} &{} 2 &{} -2 &{} 2 &{} -2 &{} 1 &{} -1 &{} \frac{1}{2} &{} -\frac{1}{4} \end{array}\right] . \end{aligned}$$

1.2 Matrix Factorization for \(N=32\)

The low-complexity matrix \(\mathbf {T}_{32,2}\) can be represented as:

$$\begin{aligned} \mathbf {T}_{32,2}=\mathbf {P}_{32}\cdot \left[ \begin{array}{cc} \mathbf {L}_{1}&{}\\ &{}{\mathbf {L}}_{2} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{2}&{}\\ &{}{\mathbf {I}}_{30} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{4}&{}\\ &{}{\mathbf {I}}_{28} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{8}&{}\\ &{}{\mathbf {I}}_{24} \end{array} \right] \\ \cdot \left[ \begin{array}{cc} \mathbf {B}_{16}&{}\\ &{}{\mathbf {I}}_{16} \end{array} \right] \cdot \mathbf {B}_{32} \end{aligned}$$

where

$$\begin{aligned} {\mathbf {P}}_{32}= {(1\;16\;5\;20\;13\;26\;25\;23\;19\;11\;18\;9\;10\;14\;30)\kern 0.10em(2\;8\;6\;28\;29\;31\;3\;24\;21\;15)\kern 0.10em(4\;12\;22\;17\;7)}, \end{aligned}$$
$$\begin{aligned} {\mathbf {L}}_1= \left[ \begin{array}{rrrrrrrrrrrrrrrr} 1 &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} -1 &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} -\frac{1}{2} &{} -1 &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} 1 &{} -\frac{1}{2} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} \frac{1}{2} &{} 1 &{} &{} -1 &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} -1 &{} &{} 1 &{} -\frac{1}{2} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} 1 &{} -1 &{} \frac{1}{2} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} -\frac{1}{2} &{} -1 &{} -1 &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} \frac{1}{2} &{} 1 &{} 1 &{} 1 &{} \frac{1}{2} &{} &{} -\frac{1}{2} &{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} -\frac{1}{2} &{} -1 &{} -\frac{1}{2} &{} \frac{1}{2} &{} 1 &{} 1 &{} &{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} \frac{1}{2} &{} 1 &{} -\frac{1}{2} &{} -1 &{} &{} 1 &{} \frac{1}{2} &{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} -1 &{} -\frac{1}{2} &{} 1 &{} &{} -1 &{} \frac{1}{2} &{} 1 &{} -\frac{1}{2} \\ &{} &{} &{} &{} &{} &{} &{} &{} 1 &{} &{} -1 &{} 1 &{} -\frac{1}{2} &{} -\frac{1}{2} &{} 1 &{} -\frac{1}{2} \\ &{} &{} &{} &{} &{} &{} &{} &{} -1 &{} \frac{1}{2} &{} &{} -\frac{1}{2} &{} 1 &{} -1 &{} 1 &{} -\frac{1}{2} \\ &{} &{} &{} &{} &{} &{} &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} \frac{1}{2} &{} -\frac{1}{2} &{} \frac{1}{2} &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} -\frac{1}{2} &{} -\frac{1}{2} &{} -\frac{1}{2} &{} -1 &{} -1 &{} -1 &{} -1 \\ \end{array}\right] \end{aligned}$$
$$\begin{aligned} {\mathbf {L}}_2= \left[ \begin{array}{rrrrrrrrrrrrrrrr} -\frac{1}{2} &{} -1 &{} -1 &{} -1 &{} -1 &{} -\frac{1}{2} &{} &{} \frac{1}{2} &{} 1 &{} 1 &{} 1 &{} \frac{1}{2} &{} &{} -\frac{1}{2} &{} -1 &{} -1 \\ \frac{1}{2} &{} 1 &{} 1 &{} 1 &{} &{} -\frac{1}{2} &{} -1 &{} -1 &{} -\frac{1}{2} &{} \frac{1}{2} &{} 1 &{} 1 &{} 1 &{} &{} -\frac{1}{2} &{} -1 \\ -\frac{1}{2} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} \frac{1}{2} &{} -\frac{1}{2} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} \frac{1}{2} &{} -\frac{1}{2} &{} -1 \\ \frac{1}{2} &{} 1 &{} \frac{1}{2} &{} -\frac{1}{2} &{} -1 &{} -\frac{1}{2} &{} 1 &{} 1 &{} \frac{1}{2} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 \\ -\frac{1}{2} &{} -1 &{} &{} 1 &{} \frac{1}{2} &{} -1 &{} -1 &{} &{} 1 &{} \frac{1}{2} &{} -1 &{} -1 &{} \frac{1}{2} &{} 1 &{} \frac{1}{2} &{} -1 \\ 1 &{} 1 &{} -\frac{1}{2} &{} -1 &{} \frac{1}{2} &{} 1 &{} &{} -1 &{} &{} 1 &{} \frac{1}{2} &{} -1 &{} -\frac{1}{2} &{} 1 &{} \frac{1}{2} &{} -1 \\ -1 &{} -\frac{1}{2} &{} 1 &{} \frac{1}{2} &{} -1 &{} -\frac{1}{2} &{} 1 &{} &{} -1 &{} &{} 1 &{} -\frac{1}{2} &{} -1 &{} \frac{1}{2} &{} 1 &{} -1 \\ 1 &{} \frac{1}{2} &{} -1 &{} \frac{1}{2} &{} 1 &{} -1 &{} -\frac{1}{2} &{} 1 &{} &{} -1 &{} 1 &{} \frac{1}{2} &{} -1 &{} &{} 1 &{} -\frac{1}{2} \\ -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} -\frac{1}{2} &{} 1 &{} -1 &{} -\frac{1}{2} &{} 1 &{} -\frac{1}{2} &{} -\frac{1}{2} &{} 1 &{} -\frac{1}{2} \\ 1 &{} -\frac{1}{2} &{} -\frac{1}{2} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} \frac{1}{2} &{} \frac{1}{2} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -\frac{1}{2} \\ -1 &{} \frac{1}{2} &{} &{} -1 &{} 1 &{} -1 &{} \frac{1}{2} &{} \frac{1}{2} &{} -1 &{} 1 &{} -\frac{1}{2} &{} &{} 1 &{} -1 &{} 1 &{} -\frac{1}{2} \\ 1 &{} -1 &{} \frac{1}{2} &{} &{} -\frac{1}{2} &{} 1 &{} -1 &{} 1 &{} -\frac{1}{2} &{} &{} \frac{1}{2} &{} -1 &{} 1 &{} -1 &{} 1 &{} -\frac{1}{2} \\ -1 &{} 1 &{} -1 &{} \frac{1}{2} &{} -\frac{1}{2} &{} &{} \frac{1}{2} &{} -\frac{1}{2} &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} \frac{1}{2} &{} \\ 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -\frac{1}{2} &{} \frac{1}{2} &{} -\frac{1}{2} &{} \frac{1}{2} &{} -\frac{1}{2} &{} &{} \\ &{} &{} -\frac{1}{2} &{} -\frac{1}{2} &{} -\frac{1}{2} &{} -\frac{1}{2} &{} -\frac{1}{2} &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 \\ &{} \frac{1}{2} &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} \frac{1}{2} &{} \frac{1}{2} &{} &{} -\frac{1}{2} &{} -\frac{1}{2} &{} -1 &{} -1 &{} -1 \\ \end{array}\right] . \end{aligned}$$

1.3 Matrix Factorization for \(N=64\)

The low-complexity matrix \(\mathbf {T}_{64,1}\) can be represented as:

$$\begin{aligned} \mathbf {T}_{64,1}=\mathbf {P}_{64} \cdot \left[ \begin{array}{ccc} \mathbf {Z}_{1}&{}&{}\\ &{}{\mathbf {Z}}_{2}&{}\\ &{}&{}{\mathbf {Z}}_{3} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{2}&{}\\ &{}{\mathbf {I}}_{62} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{4}&{}\\ &{}{\mathbf {I}}_{60} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{8}&{}\\ &{}{\mathbf {I}}_{56} \end{array} \right] \\ \cdot \left[ \begin{array}{cc} \mathbf {B}_{16}&{}\\ &{}{\mathbf {I}}_{48} \end{array} \right] \cdot \left[ \begin{array}{cc} \mathbf {B}_{32}&{}\\ &{}{\mathbf {I}}_{32} \end{array} \right] \cdot \mathbf {B}_{64} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} {\mathbf {P}}_{64}=&\ {(1\;32\;17\;22\;42\;37\;27\;62\;5\;40\;33\;19\;30\;14\;4\;24\;50\;53\;59\;9\;28\;2\;16\;18\;26\;58\;7\;8\;20\;34\;21\;38\;29\;6\;56)} \\&\ {(3\;48\;49\;51\;55\;63\;13\;60\;11\;44\;41\;35\;23\;46\;45\;43\;39\;31\;10\;36\;25\;54\;61\;15\;12\;52\;57)}, \end{aligned} \end{aligned}$$
$$\begin{aligned} {\mathbf {Z}}_1= \left[ \begin{array}{rrrrrrrrrrrrrrrr} 1 &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{}-1&{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{}-1&{}-1&{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} 1&{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} 1&{}1&{} &{} -1&{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{}-1&{} &{} 1&{} -1&{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} 1&{}-1&{}1&{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} &{}-1&{}-1&{}-1&{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1\\ &{} &{} &{} &{} &{} &{} &{} &{} 1 &{} 1 &{} &{} -1 &{} &{} 1 &{} 1 &{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} -1 &{} -1 &{} 1 &{} &{} -1 &{} &{} 1 &{} -1\\ &{} &{} &{} &{} &{} &{} &{} &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} 1 &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} -1&{}-1 &{} -1&{} -1&{} -1&{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 \\ \end{array}\right] , \end{aligned}$$
$$\begin{aligned} {\mathbf {Z}}_2= \left[ \begin{array}{rrrrrrrrrrrrrrrr} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1\\ 1 &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1\\ -1 &{} -1 &{} &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} &{} -1\\ 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} &{} -1 &{} &{} 1 &{} &{} -1 &{} -1 &{} 1 &{} 1 &{} -1\\ -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} &{} -1 &{} &{} 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 \\ 1 &{} &{} -1 &{} &{} 1 &{} -1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} -1\\ -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} -1 &{} 1 &{} -1\\ 1 &{} &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1\\ -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} \\ 1 &{} -1 &{} &{} &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} \\ -1 &{} 1 &{} -1 &{} 1 &{} &{} &{} &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} \\ 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} &{} &{} \\ &{} &{} &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1\\ &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} &{} &{} -1 &{} -1 &{} -1 &{} -1\\ &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1\\ &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} &{} -1 &{} -1\\ \end{array}\right],\ {\mathbf {Z}}_{3}= \left[ \begin{array}{ccc} \mathbf {Q}_{1}&{}\mathbf {Q}_{2}\\ \mathbf {Q}_{3}&{}{\mathbf {Q}}_{4} \end{array} \right] , \end{aligned}$$

and

$$\begin{aligned} {\mathbf {Q}}_{1}= \left[ \begin{array}{rrrrrrrrrrrrrrrr} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} \\ 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} &{} 1 &{} 1 \\ -1 &{} -1 &{} -1 &{} 1 &{} 1 &{} 1 &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} \\ 1 &{} 1 &{} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} 1 &{} 1 &{} 1 &{} -1 &{} -1 \\ -1 &{} -1 &{} &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 &{} &{} 1 &{} 1 &{} \\ 1 &{} 1 &{} &{} -1 &{} &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 \\ -1 &{} -1 &{} 1 &{} 1 &{} &{} -1 &{} &{} 1 &{} 1 &{} -1 &{} -1 &{} 1 &{} 1 &{} &{} -1 &{} \\ 1 &{} 1 &{} -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} &{} -1 &{} &{} 1 &{} &{} -1 \\ -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} &{} -1 &{} &{} 1 &{} \\ 1 &{} 1 &{} -1 &{} &{} 1 &{} &{} -1 &{} &{} 1 &{} -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 \\ -1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 &{} \\ 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 \\ -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} \\ 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 \\ -1 &{} &{} 1 &{} -1 &{} 1 &{} 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} \\ 1 &{} &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 \\ \end{array}\right] , \end{aligned}$$
$$\begin{aligned} {\mathbf {Q}}_{2}= \left[ \begin{array}{rrrrrrrrrrrrrrrr} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 \\ &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 &{} 1 &{} 1 &{} 1 &{} &{} -1 \\ 1 &{} 1 &{} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 \\ &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} &{} -1 \\ -1 &{} -1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} 1 &{} 1 &{} &{} -1 \\ &{} -1 &{} -1 &{} 1 &{} 1 &{} &{} -1 &{} &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} -1 \\ 1 &{} &{} -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} -1 &{} &{} 1 &{} &{} -1 &{} &{} 1 &{} 1 &{} -1 \\ &{} 1 &{} &{} -1 &{} &{} 1 &{} &{} -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} -1 &{} 1 &{} 1 &{} -1 \\ -1 &{} &{} 1 &{} &{} -1 &{} &{} 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 &{} -1 &{} 1 &{} 1 &{} -1 \\ &{} -1 &{} &{} 1 &{} -1 &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 \\ 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} -1 &{} 1 &{} &{} -1 &{} &{} 1 &{} -1 \\ &{} 1 &{} -1 &{} &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} -1 \\ -1 &{} 1 &{} 1 &{} -1 &{} 1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 \\ &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} -1 &{} 1 &{} -1 &{} -1 &{} 1 &{} -1 \\ 1 &{} -1 &{} &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 \\ &{} 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 \\ \end{array}\right] , \end{aligned}$$
$$\begin{aligned} {\mathbf {Q}}_{3}= \left[ \begin{array}{rrrrrrrrrrrrrrrr} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} &{} 1 \\ 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 \\ -1 &{} 1 &{} &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} &{} -1 \\ 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} &{} &{} 1 &{} -1 &{} 1 &{} -1 \\ -1 &{} 1 &{} -1 &{} &{} &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} &{} &{} 1 \\ 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} &{} &{} &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 \\ -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} &{} &{} &{} &{} &{} -1 &{} 1 &{} -1 \\ 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 \\ &{} &{} &{} &{} &{} &{} &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 \\ &{} &{} &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 \\ &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} &{} &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} &{} -1 \\ &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} 1 \\ &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 \\ &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} &{} &{} &{} 1 &{} 1 \\ &{} -1 &{} -1 &{} -1 &{} &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} &{} 1 \\ \end{array}\right] , \end{aligned}$$
$$\begin{aligned} {\mathbf {Q}}_{4}= \left[\begin{array}{rrrrrrrrrrrrrrrr} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} \\ -1 &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} &{} &{} 1 &{} -1 &{} 1 &{} \\ 1 &{} -1 &{} 1 &{} -1 &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} &{} -1 &{} 1 &{} -1 &{} 1 &{} \\ 1 &{} &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} \\ -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} &{} &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} \\ -1 &{} 1 &{} &{} &{} &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} \\ 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} &{} &{} \\ 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} &{} &{} &{} &{} &{} &{} &{} \\ -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 \\ 1 &{} 1 &{} 1 &{} &{} &{} &{} &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 \\ -1 &{} &{} &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} &{} &{} -1 &{} -1 &{} -1 \\ -1 &{} -1 &{} -1 &{} -1 &{} &{} &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 \\ 1 &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} &{} -1 &{} -1 \\ -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} -1 \\ 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 &{} -1 &{} -1 &{} &{} 1 &{} 1 &{} 1 &{} 1 &{} &{} -1 &{} -1 \\ \end{array}\right] . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radünz, A.P., Portella, L., Oliveira, R.S. et al. Extensions on Low-Complexity DCT Approximations for Larger Blocklengths Based on Minimal Angle Similarity. J Sign Process Syst 95, 495–516 (2023). https://doi.org/10.1007/s11265-023-01848-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-023-01848-w

Keywords

Navigation