[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

MIMO Detector for LTE/LTE-A Uplink Receiver

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

We propose a carefully selected receiver structure, detector and detector implementation architecture for multiple-input multiple-output (MIMO) uplink base station receiver for fourth generation (4G) wireless cellular systems. First, we compare different receiver algorithms and structures for single-carrier frequency-division multiple access (SC-FDMA) uplink transmission to get a good understanding of the performance and complexity of these algorithms and their suitability for practical realization. One of those structures, namely the frequency domain MMSE equalization with sphere detection (SD), is proposed for implementation. The receiver consists of separate stages for inter-symbol interference (ISI) and inter-antenna interference (IAI) mitigation in frequency selective MIMO channels. Frame error rate (FER) performance is studied via simulations in realistic wireless channels and practical system parameters. K-best SD is selected as a detector algorithm for this receiver. There are several publications proposing a sort-free architecture for tree search type of detectors. Both a conventional K-best architecture and a sort-free architecture are implemented on a Xilinx Virtex-6 field-programmable gate array (FPGA) using High Level Synthesis (HLS) tool. Both architectures support 4 × 4 MIMO with 64-level modulation (64-QAM). Complexity results confirm that avoiding the sorter is not always recommended. The benefit of sort-free architecture depends on the system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. 3rd Generation Partnership Project (3GPP). (2012). Physical layer procedures, 3GPP TS 36.213 V11.0.0, Tech. Rep.

  2. Zvonar, Z. (1995). Multiuser detection in asynchronous CDMA frequency-selective fading channels. Wireless Personal Communications, 2(4), 373–392.

    Article  Google Scholar 

  3. 3rd Generation Partnership Project (3GPP). (2010). Further advancements for E-UTRA physical layer aspects, 3GPP TR 36.814 V9.0.0, Tech. Rep.

  4. Falconer, D., Ariyavisitakul, S., Benyamin-Seeyar, A., Eidson, B. (2002). Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine, 40(4), 58–66.

    Article  Google Scholar 

  5. Sari, H., Karam, G., Jeanclaude, I. (1994). Frequency domain equalization of mobile radio and terrestrial broadcast channels. In Proceedings of the IEEE global telecommunication conference.

  6. Tüchler, M., Singer, A., Koetter, R. (2002). Minimum mean squared error equalization using a priori information. IEEE Signal Processing Letters, 50(3), 673–683.

    Article  Google Scholar 

  7. Koetter, R., Singer, A., Tüchler, M. (2003). Turbo equalisation. IEEE Signal Processing Magazine, 21(1), 67–80.

    Article  Google Scholar 

  8. Abe, T., & Matsumoto, T. (2003). Space-time turbo equalization in frequency-selective MIMO channels. IEEE Transactions on Vehicular Technology, 52(3), 469–475.

    Article  Google Scholar 

  9. Kansanen, K., & Matsumoto, T. (2007). An analytical method for MMSE MIMO turbo equalizer EXIT chart computation. IEEE Transactions on Wireless Communications, 6(1), 59–63.

    Article  Google Scholar 

  10. Karjalainen, J., Veselinovic, N., Kansanen, K., Matsumoto, T. (2007). Iterative frequency domain joint-over-antenna detection in multiuser MIMO. IEEE Transactions on Wireless Communications, 6(10), 3620–3631.

    Article  Google Scholar 

  11. Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  MathSciNet  Google Scholar 

  12. Gesbert, D., Shafi, M., Shiu, D., Smith, P. J., Naguib, A. (2003). From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.

    Article  Google Scholar 

  13. Damen, M.O., Gamal, H.E., Caire, G. (2003). On maximum–likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory, 49(10), 2389–2402.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hochwald, B., & ten Brink, S. (2003). Achieving near-capacity on a multiple-antenna channel. IEEE Communications Letters, 51(3), 389–399.

    Google Scholar 

  15. Guo, Z., & Nilsson, P. (2006). Algorithm and implementation of the K-best sphere decoding for MIMO detection. IEEE Journal on Selected Areas in Communications, 24(3), 491–503.

    Article  Google Scholar 

  16. Chen, S., Zhang, T., Xin, Y. (2007). Relaxed K-best MIMO signal detector design and VLSI implementation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(3), 328–337.

    Article  Google Scholar 

  17. Studer, C., Burg, A., Bolcskei, H. (2008). Soft-output sphere decoding: algorithms and VLSI implementation. IEEE Journal on Selected Areas in Communications, 26(2), 290–300.

    Article  Google Scholar 

  18. Myllylä, M., Juntti, M., Cavallaro, J. (2010). Implementation aspects of list sphere decoder algorithms for MIMO-OFDM systems. Elsevier Journal on Signal Processing, 90(10), 2863–2876.

    Article  MATH  Google Scholar 

  19. Myllylä, M., Cavallaro, J., Juntti, M. (2011). Architecture design and implementation of the metric first list sphere detector algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(5), 895–899.

    Article  Google Scholar 

  20. Ketonen, J., Juntti, M., Cavallaro, J. (2010). Performance-complexity comparison of receivers for a LTE MIMO-OFDM system. IEEE Signal Processing Letters, 58(6), 3360–3372.

    Article  MathSciNet  MATH  Google Scholar 

  21. Pancaldi, F., Vitetta, G., Kalbasi, R., Al-Dhahir, N., Uysal, M., Mheidat, H. (2008). Single-carrier frequency domain equalization. IEEE Signal Processing Magazine, 25(5), 37–56.

    Article  Google Scholar 

  22. Gerstacker, W., Nickel, P., Obernosterer, F., Dang, U.L., Gunreben, P., Koch, W. (2008). Trellis-based receivers for SC-FDMA transmission over MIMO ISI channels. In Proceedings of the IEEE international conference on communications.

  23. Ketonen, J., Karjalainen, J., Juntti, M., Hänninen, T. (2011). Mimo detection in single carrier systems. In Proceedings of the 19th European signal processing conference.

  24. Juntti, M., Hooli, K., Kiiskilä, K., Ylioinas, J. (2007). Space-time equalizers for MIMO high speed WCDMA downlinks. IEEE Transactions on Wireless Communications, 6(7), 2582–2592.

    Article  Google Scholar 

  25. Wong, K., Tsui, C., Cheng, R.K., Mow, W. (2002). A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. In Proceedings of the IEEE international symposium on circuits and systems.

  26. Li, M., Bougart, B., Lopez, E., Bourdoux, A. (2008). Selective spanning with fast enumeration: a near maximum-likelihood MIMO detector designed for parallel programmable baseband architectures. In Proceedings of the IEEE international conference on communications.

  27. 3rd Generation Partnership Project (3GPP). (2007). Spatial channel model for multiple input multiple output (MIMO) simulations, 3GPP TR 25.996 V7.0.0, Tech. Rep.

  28. Dick, C., Trajkovic, M., Denic, S., Vuletic, D., Rao, R., Harris, F., Amiri, K. (2009). Fpga implementation of a near-ML shere detector for 802.16e broadband wireless systems. In Proceedings of the SDR ’09 technical conference and product exposition.

  29. Berkeley Design Technology Inc. (2010). An independent evaluation of: high-level synthesis tools for Xilinx FPGAs, Tech. Rep.

  30. Noguera, J., Neuendorffer, S., Haastregt, S., Barba, J., Vissers, K., Dick, C. (2011). Implementation of sphere decoder for MIMO-OFDM on FPGAs using high-level synthesis tools. Analog Integrated Circuits and Signal Processing, 69(2), 119–129.

    Article  Google Scholar 

  31. Wenk, M., Zellweger, M., Burg, A., Felber, N., Fichtner, W. (2006). K-best MIMO detection VLSI architectures achieving up to 424 mbps in IEEE. In International symposium on circuits and systems.

  32. Shabany, M., Su, K., Gulak, P. (2008). A pipelined scalable high-throughput implementation of a near-ML K-best complex lattice decoder. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing.

  33. Shabany, M., & Gulak, P. (2012). A 675 mbps, 4 × 4 64-QAM K-Best MIMO Detector in 0.13 μ m cmos. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 135–147.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially done in the CoMIT project which was supported by Elektrobit, Nokia, Xilinx and the Finnish Funding Agency for Technology and Innovation (Tekes). The authors would like to thank Xilinx Inc., especially Juanjo Noguera, Baris Ozgul and Jari Keskinen, for the possibility to evaluate Xilinx Vivado High Level Synthesis tool and for their co-operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomo Hänninen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hänninen, T., Ketonen, J. & Juntti, M. MIMO Detector for LTE/LTE-A Uplink Receiver. J Sign Process Syst 91, 423–435 (2019). https://doi.org/10.1007/s11265-018-1329-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1329-z

Keywords

Navigation