Abstract
The paper presents a new approach of description and analysis of potential lesions in cerebral blood flow and cerebral blood volume perfusion maps. To perform such a computer analysis at first the axial position in patient’s brain must be chosen. In next step the generation of brain perfusion maps connected with detection of asymmetries indicating selected pathological states, and allowing supporting diagnosis of the visible lesions are all done automatically. The constructed system uses the unified algorithm for detection of asymmetry in cerebral blood flow and cerebral blood volume perfusion maps, as well as a registration algorithm created by the authors and based on free form deformation. The tests were performed on set of dynamic perfusion computer tomography maps. Algorithms presented in this paper enable detection of pathological states like head injuries, epilepsy, brain vascular disease, ischemic and hemorrhagic stroke.
Similar content being viewed by others
References
Latchaw, R. E., Yonas, H., Hunter, G. J., Yuh, W. T. C., Ueda, T., Sorensen, A. G., et al. (2003). Guidelines and recommendations for perfusion imaging in cerebral ischemia. Stroke, 34, 1084–1104.
Hachaj, T. (2008). An algorithm for detecting lesions in CBF and CBV perfusion maps. Bio-Algorithms and Med-Systems, 7, 35–41.
Hachaj, T. (2008). The unified algorithm for detection of potential lesions in dynamic perfusion maps cerebral blood flow, cerebral blood flow and time to peek. Journal of Medical Informatics & Technologies, 12, 117–122. Computer Systems Dept. University of Silesia.
Hachaj, T. (2008). The registration and atlas construction of noisy brain computer tomography images based on free form deformation technique. Bio-Algorithms and Med-Systems, 7, 43–50.
Sasaki, M., Kudo, K., & Oikawa, H. (2006). CT perfusion for acute stroke: current concepts on technical aspects and clinical applications. International Congress Series, 1290, 30–36.
Siemens, A. G. Clinical Applications. Application Guide. Software Version syngo CT 2007A, Siemens Medical, 06/2006.
Laliberté, J.-F., Meunier, J., Mignotte, M., & Soucy, J. P. (October 2004). Detection of abnormal diffuse perfusion in SPECT using a normal brain atlas. NeuroImage, 23(2), 561–8.
Goutsias, J., & Batman, S. (2000). Morphological methods for biomedical image analysis, medical imaging (Vol. 2). Washington: Medical Image Processing and Analysis.
Kudo, K. Perfusion Mismatch Analyzer (PMA), Acute Stroke Imaging Standardization Group, http://asist.umin.jp.
Wittsack, H.-J., Wohlschläger, A. M., Ritzl, E. K., Kleiser, R., Cohnena, M., Seitz, R. J., et al. (2008). CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition. Computerized Medical Imaging and Graphics, 32, 67–77.
Zierler, K. L. (1965). Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res, 16, 309–21.
Ritter, G. X., & Wilson, J. N. (1996). Computer vision algorithms in image algebra. Boca Raton: CRC.
Ramirez, L., Durdle, N. G., & Raso, V. J. (2003). Medical image registration in computational intelligence framework: A review. Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on Volume 2, 4–7 May 2003, vol. 2, pp. 1021–1024.
Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transaction on Medical Imaging, 18(8), 712–721.
Ino, F., Ooyama, K., & Hagihara, K. (2005). A data distributed parallel algorithm for nonrigid image registration. Parallel Computing, 31, 19–43.
Bardinet, E., Cohen, L. D., & Ayache, N. (1996). Tracking and motion analysis of the left ventricle with deformable superquadrics. Medical Image Analysis, 1(2), 129–149.
Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1997). Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal of Optimization, 9(1), 112–147.
Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (2007). Numerical recipes: The art of scientific computing, third edition. New York: Cambridge University Press.
Semmlow, J. L. (2004). Biosignal and biomedical image processing. MATLAB—Based Applications. New York: Marcel Dekker Inc.
Purwar, A., Gupta, R., Sarma, M. K., Bayu, G., Singh, A., Rathore, D. K., et al. (2006). De-scalping of the brain in echo planar DT-MRI. Proceedings of International Society of Magnetic Resonance in Medicine 14.
Sinha, U., & Kangarloo, H. (2002). Principal component analysis for contentbased image retrieval. RadioGraphics, 22, 1271–1289.
Ogiela, M. R., & Tadeusiewicz, R. (2008). Modern computational intelligence methods for the interpretation of medical images. Berlin Heidelberg: Springer-Verlag.
Tadeusiewicz, R., & Ogiela, M. R. (2006). Automatic image understanding—a new paradigm for intelligent medical image analysis (opening article). Bio-Algorithms and Med-Systems, 2(3), 5–11.
Tadeusiewicz, R., & Ogiela, M. R. (2004). Medical image understanding technology. Berlin-Heidelberg: Springer-Verlag.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Hachaj, T., Ogiela, M.R. Automatic Detection and Lesion Description in Cerebral Blood Flow and Cerebral Blood Volume Perfusion Maps. J Sign Process Syst 61, 317–328 (2010). https://doi.org/10.1007/s11265-010-0454-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-010-0454-0