[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Automatic Detection and Lesion Description in Cerebral Blood Flow and Cerebral Blood Volume Perfusion Maps

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The paper presents a new approach of description and analysis of potential lesions in cerebral blood flow and cerebral blood volume perfusion maps. To perform such a computer analysis at first the axial position in patient’s brain must be chosen. In next step the generation of brain perfusion maps connected with detection of asymmetries indicating selected pathological states, and allowing supporting diagnosis of the visible lesions are all done automatically. The constructed system uses the unified algorithm for detection of asymmetry in cerebral blood flow and cerebral blood volume perfusion maps, as well as a registration algorithm created by the authors and based on free form deformation. The tests were performed on set of dynamic perfusion computer tomography maps. Algorithms presented in this paper enable detection of pathological states like head injuries, epilepsy, brain vascular disease, ischemic and hemorrhagic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Latchaw, R. E., Yonas, H., Hunter, G. J., Yuh, W. T. C., Ueda, T., Sorensen, A. G., et al. (2003). Guidelines and recommendations for perfusion imaging in cerebral ischemia. Stroke, 34, 1084–1104.

    Article  Google Scholar 

  2. Hachaj, T. (2008). An algorithm for detecting lesions in CBF and CBV perfusion maps. Bio-Algorithms and Med-Systems, 7, 35–41.

    Google Scholar 

  3. Hachaj, T. (2008). The unified algorithm for detection of potential lesions in dynamic perfusion maps cerebral blood flow, cerebral blood flow and time to peek. Journal of Medical Informatics & Technologies, 12, 117–122. Computer Systems Dept. University of Silesia.

    Google Scholar 

  4. Hachaj, T. (2008). The registration and atlas construction of noisy brain computer tomography images based on free form deformation technique. Bio-Algorithms and Med-Systems, 7, 43–50.

    Google Scholar 

  5. Sasaki, M., Kudo, K., & Oikawa, H. (2006). CT perfusion for acute stroke: current concepts on technical aspects and clinical applications. International Congress Series, 1290, 30–36.

    Article  Google Scholar 

  6. Siemens, A. G. Clinical Applications. Application Guide. Software Version syngo CT 2007A, Siemens Medical, 06/2006.

  7. Laliberté, J.-F., Meunier, J., Mignotte, M., & Soucy, J. P. (October 2004). Detection of abnormal diffuse perfusion in SPECT using a normal brain atlas. NeuroImage, 23(2), 561–8.

    Article  Google Scholar 

  8. Goutsias, J., & Batman, S. (2000). Morphological methods for biomedical image analysis, medical imaging (Vol. 2). Washington: Medical Image Processing and Analysis.

    Google Scholar 

  9. Kudo, K. Perfusion Mismatch Analyzer (PMA), Acute Stroke Imaging Standardization Group, http://asist.umin.jp.

  10. Wittsack, H.-J., Wohlschläger, A. M., Ritzl, E. K., Kleiser, R., Cohnena, M., Seitz, R. J., et al. (2008). CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition. Computerized Medical Imaging and Graphics, 32, 67–77.

    Article  Google Scholar 

  11. Zierler, K. L. (1965). Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res, 16, 309–21.

    Google Scholar 

  12. Ritter, G. X., & Wilson, J. N. (1996). Computer vision algorithms in image algebra. Boca Raton: CRC.

    MATH  Google Scholar 

  13. Ramirez, L., Durdle, N. G., & Raso, V. J. (2003). Medical image registration in computational intelligence framework: A review. Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on Volume 2, 4–7 May 2003, vol. 2, pp. 1021–1024.

  14. Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transaction on Medical Imaging, 18(8), 712–721.

    Article  Google Scholar 

  15. Ino, F., Ooyama, K., & Hagihara, K. (2005). A data distributed parallel algorithm for nonrigid image registration. Parallel Computing, 31, 19–43.

    Article  Google Scholar 

  16. Bardinet, E., Cohen, L. D., & Ayache, N. (1996). Tracking and motion analysis of the left ventricle with deformable superquadrics. Medical Image Analysis, 1(2), 129–149.

    Article  Google Scholar 

  17. Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1997). Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal of Optimization, 9(1), 112–147.

    Article  MathSciNet  Google Scholar 

  18. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (2007). Numerical recipes: The art of scientific computing, third edition. New York: Cambridge University Press.

  19. Semmlow, J. L. (2004). Biosignal and biomedical image processing. MATLAB—Based Applications. New York: Marcel Dekker Inc.

  20. Purwar, A., Gupta, R., Sarma, M. K., Bayu, G., Singh, A., Rathore, D. K., et al. (2006). De-scalping of the brain in echo planar DT-MRI. Proceedings of International Society of Magnetic Resonance in Medicine 14.

  21. Sinha, U., & Kangarloo, H. (2002). Principal component analysis for contentbased image retrieval. RadioGraphics, 22, 1271–1289.

    Google Scholar 

  22. Ogiela, M. R., & Tadeusiewicz, R. (2008). Modern computational intelligence methods for the interpretation of medical images. Berlin Heidelberg: Springer-Verlag.

    Book  MATH  Google Scholar 

  23. Tadeusiewicz, R., & Ogiela, M. R. (2006). Automatic image understanding—a new paradigm for intelligent medical image analysis (opening article). Bio-Algorithms and Med-Systems, 2(3), 5–11.

    Google Scholar 

  24. Tadeusiewicz, R., & Ogiela, M. R. (2004). Medical image understanding technology. Berlin-Heidelberg: Springer-Verlag.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek R. Ogiela.

Appendix

Appendix

Table 2 Notation used in the description of the algorithm used for detecting of brain asymmetry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hachaj, T., Ogiela, M.R. Automatic Detection and Lesion Description in Cerebral Blood Flow and Cerebral Blood Volume Perfusion Maps. J Sign Process Syst 61, 317–328 (2010). https://doi.org/10.1007/s11265-010-0454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0454-0

Keywords

Navigation