[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Left Ventricle Segmentation Using Model Fitting and Active Surfaces

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

A method to perform 4D (3D over time) seg mentation of the left ventricle of a mouse heart using a set of B mode cine slices acquired in vivo from a series of short axis scans is described. We incorporate previ ously suggested methods such as temporal propagation, the gradient vector flow active surface, superquadric models, etc. into our proposed 4D segmentation of the left ventricle. The contributions of this paper are incor poration of a novel despeckling method and the use of locally fitted superellipsoid models to provide a better initialization for the active surface segmentation algorithm. Average distances of the improved surface segmentation to a manually segmented surface through out the entire cardiac cycle and cross-sectional contours are provided to demonstrate the improvements pro duced by the proposed 4D segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Notes

  1. Area in the image where features or structure exist but were not captured in the image.

  2. Although the speed and robustness of the algorithm could be improved by establishing a optimal search method, the optimality of the search method is beyond the scope of this paper.

  3. Determination of which search algorithm provides the best tradeoff between computational speed and accuracy is beyond the scope of this paper.

  4. The point during the cardiac cycle when the myocardium is most relaxed and the volume of the LV is at its maximum. See Agnew et al. [44] for a concise definition.

References

  1. McCann, H. A., Sharp, J. C., Kinter, T. M., McEwan, C. N., Barillot, C., & Greenleaf, J. F. (1988). Multidimensional ultrasonic imaging for cardiology. Ultrasound in Medicine & Biology, 76(9), 1063–1073, September.

    Google Scholar 

  2. Fenster, A., Downey, D. B., & Cardinal, H. N. (2001). Three-dimensional ultrasound imaging. Physics in Medicine and Biology, 46, R67–R99.

    Article  Google Scholar 

  3. Frangi, A. F., Niessen, W. J., & Viergever, M. A. (2001). Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Transactions on Medical Imaging, 20(1), 2–25, January.

    Article  Google Scholar 

  4. Jasjit, S. S. (2000). Computer vision, pattern recognition and image processing in left ventricle segmentation: The last 50 years. Pattern Analysis and Applications, 3(3), 209–242, September.

    Article  MATH  Google Scholar 

  5. McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2), 91–108.

    Article  Google Scholar 

  6. Bardinet, E., Cohen, L. D., & Ayache, N. (1998). A parametric deformable model to fit unstructured 3D data. Computer Vision and Image Understanding, 71(1), 39–54.

    Article  Google Scholar 

  7. Bardinet, E., Cohen, L. D., & Ayache, N. (1996). Tracking and motion analysis of the left ventricle with deformable superquadrics. Medical Image Analysis, 1(2), 129–149.

    Article  Google Scholar 

  8. Montagnat, J., & Delingette, H. (1998). Globally constrained deformable models for 3D object reconstruction. Signal Processing, 71(2), 173–186.

    Article  MATH  Google Scholar 

  9. Chen, C. W., Huang, T. S., & Arrott, M. (1994). Modeling, analysis, and visualization of left ventricle shape and motion by hierarchical decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(4), 342–356, April.

    Article  Google Scholar 

  10. Goshtasby, A., & Turner, D. A. (1995). Segmentation of cardiac MR images for extraction of right and left ventricular chambers. IEEE Transactions on Medical Imaging, 14(1), 56–64, January.

    Article  Google Scholar 

  11. Kaus, M. R., von Berg, J., Niessen, W., & Pekar, V. (2003). Automated segmentation of the left ventricle in cardiac MRI. In Medical image computing and computer-assisted intervention (pp. 432–439). Berlin: Springer.

    Google Scholar 

  12. Paragios, N. (2003). A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Transactions on Medical Imaging, 22(6), 773–776, June.

    Article  Google Scholar 

  13. Corsi, C., Saracino, G., Sarti, A., & Lamberti, C. (2002). Left ventricular volume estimation for real-time three-dimensional echocardiography. IEEE Transactions on Medical Imaging, 14(21), 1202–1208, September.

    Article  Google Scholar 

  14. Coppini, G., Poli, R., & Valli, G. (1995). Recovery of the 3-D shape of the left ventricle from echocardiographic images. IEEE Transactions on Medical Imaging, 14(2), 301–317, June.

    Article  Google Scholar 

  15. Gustavsson, T., Pascher, R., & Caidahl, K. (1993). Model based dynamic 3D reconstruction and display of the left ventricle from 2D cross-sectional echocargiograms. Computerized Medical Imaging and Graphics, 17(4/5), 273–278.

    Article  Google Scholar 

  16. McPherson, D. D., Skorton, D. J., Kodiyalam, S., Petree, L., Noel, M. P., Kieso, R., et al. (1987). Finite element analysis of myocardial diastolic function using three-dimensional echocardiographic reconstruction: Application of a new method for study of acute ischemia in dogs. Circulation Research, 60(5), 674–682, May.

    Google Scholar 

  17. Strickels, K. R., & Wann, L. S. (1984). An analysis of three-dimensional reconstructive echocardiography. Ultrasound in Medicine & Biology, 10(5), 575–580.

    Article  Google Scholar 

  18. Geiser, E. A., Lupkiewicz, S. M., Christie, L. G., Ariet, M., Conetta, D. A., & Conti, C. R. (1980). A framework for three-dimensional time-varying reconstruction of the human left ventricle: Sources of error and estimation of their magnitude. Computers and Biomedical Research, 13, 225–241.

    Article  Google Scholar 

  19. Chu, C. H., Delp, E. J., & Buda, A. J. (1998). Detecting left ventricular endocardial and epicardial boundaries by digital two-dimensional echocardiography. IEEE Transactions on Medical Imaging, 7(2), 81–90, July.

    Article  Google Scholar 

  20. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes-active contour models. International Journal of Computer Vision, 1(4), 321–331, January.

    Article  Google Scholar 

  21. Cohen, L. D., & Cohen, I. (1993). Finite element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1131–1147, November.

    Article  Google Scholar 

  22. Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369, March.

    Article  MATH  MathSciNet  Google Scholar 

  23. Xu, C., & Prince, J. L. (2000). Gradient vector flow deformable models. In I. N. Bankman (Ed.), Handbook of medical imaging. Orlando, FL: Academic Press.

    Google Scholar 

  24. Li, B., & Acton, S. T. (2007). Active contour external force using vector field convolution for image segmentation. IEEE Transactions on Image Processing, 16(8), 2096–2106, November.

    Article  MathSciNet  Google Scholar 

  25. Li, B., & Acton, S. T. (2008). Automatic active model initializations via Poisson inverse gradient. IEEE Transactions on Image Processing (in press).

  26. Nagao, M., & Matsuyama, T. (1979). Edge preserving smoothing. Computer Graphics and Image Processing, 9(4), 394–407, April.

    Article  Google Scholar 

  27. Lee, J. S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(2), 165–168, March.

    Article  Google Scholar 

  28. Frost, V. S., Stiles, J. A., Shanmugan, K. S., & Holtzman, J. C. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(2), 157–166, March.

    Article  Google Scholar 

  29. Kuan, D. T., Sawchuk, A. A., Strand, T. C., & Chavel, P. (1985). Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-7(2), 165–177, March.

    Article  Google Scholar 

  30. Kuan, D. T., Sawchuk, A. A., Strand, T. C., & Chavel, P. (1987). Adaptive restoration of images with speckle. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-35(3), 373–383, March.

    Article  Google Scholar 

  31. Loupas, T., McDicken, W. N., & Allan, P. L. (1989). An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems, 36(1), 129–135, January.

    Article  Google Scholar 

  32. Karaman, M., Kutay, M. A., & Bozdagi, G. (1995). An adaptive speckle suppression filter for medical ultrasonic imaging. IEEE Transactions on Medical Imaging, 14(2), 283–292, June.

    Article  Google Scholar 

  33. Yu, Y., & Acton, S. T. (2002). Speckle reducing anisotropic diffusion. Computer Graphics and Image Processing, 11(11), 1260–1270, November.

    MathSciNet  Google Scholar 

  34. Hao, S. G. X., & Gao, X. (1999). A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing. IEEE Transactions on Medical Imaging, 18(9), 797–794, September.

    Google Scholar 

  35. Achim, A., Bezerianos, A., & Tsakalides, P. (2001). Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Transactions on Medical Imaging, 20(8), 772–783, August.

    Article  Google Scholar 

  36. Lopes, A., Touzi, R., & Nezry, E. (1990). Adaptive speckle filters and scene heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 28(6), 992–1000, November.

    Article  Google Scholar 

  37. Michailovich, O. V., & Tannenbaum, A. (2006). Despeckling of medical ultrasound images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53(1), 64–78, January.

    Article  Google Scholar 

  38. Dutt, V., & Greenleaf, J. (1996). Adaptive speckle reduction filter for log-compressed B-scan images. IEEE Transactions on Medical Imaging, 15(6), 802–813, December.

    Article  Google Scholar 

  39. Tay, P. C., Acton, S. T., & Hossack, J. A. (2006). A stochastic approach to ultrasound despeckling. In Proc. IEEE int’l. symp. on biom. imag. (pp. 907–910). Arlington, Virginia, USA, 6–9 April.

  40. Sethian, J. (1999). Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. New York, NY: Cambridge University Press.

    MATH  Google Scholar 

  41. Klingensmith, J. D., Shekhar, R., & Vince, D. G. (1996). Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Transactions on Image Processing, 5(6), 996–1011, June.

    Article  Google Scholar 

  42. Taubin, G. (1995). A signal processing approach to fair surface design. In SIGGRAPH (pp. 351–358).

  43. Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14, 29–56.

    Article  Google Scholar 

  44. Agnew, L. R. C., Aviado, D. M., Brody, J. I., Burrows, W., Butler, R. F., Combs, C. M., et al. (Eds.) (1965). Dorland’s illustrated medical dictionary, 24th edn. Philadelphia: W.B. Saunders Company.

    Google Scholar 

  45. Chérin, E., Williams, R., Needles, A., Liu, G., White, C., Brown, A. S., et al. (2006). Ultrahigh frame rate retrospective ultrasound microimaging and blood flow visualization in mice in vivo. Ultrasound in Medicine & Biology, 32(5), 683–691, May.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Tay.

Additional information

This work was supported in part by NIH NIBIB grant EB001826, US Army CDMRP grant (W81XWH-04-1-0240), and NIH NCRR RR022582 (for purchase of VisualSonics Vevo 770 scanner).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tay, P.C., Li, B., Garson, C.D. et al. Left Ventricle Segmentation Using Model Fitting and Active Surfaces. J Sign Process Syst Sign Image Video Technol 55, 139–156 (2009). https://doi.org/10.1007/s11265-008-0219-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0219-1

Keywords

Navigation