[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Non-Rigid Ultrasound Image Registration Based on Intensity and Local Phase Information

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

A non-rigid ultrasound image registration method is proposed in this work using the intensity as well as the local phase information under a variational framework. One application of this technique is to register two consecutive images in an ultrasound image sequence. Although intensity is the most widely used feature in traditional ultrasound image registration algorithms, speckle noise and lower image resolution make the registration process difficult. By integrating the intensity and the local phase information, we can find and track the non-rigid transformation of each pixel under diffeomorphism between the source and target images. Experiments using synthetic and cardiac images of in vivo mice and human subjects are conducted to demonstrate the advantages of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shung, K. K., Smith, M. B., & Tsui, B. M. W. (1992). Principles of medical imaging. San Diego, CA: Academic.

    Google Scholar 

  2. Shung, K. K. (2005). Diagnostic ultrasound: Imaging and blood flow measurements. Boca Raton, FL: Francis Taylor.

    Google Scholar 

  3. Nelson, T. R., Downay, D. B., Pretorius, D. H., & Fenster, A. (1990). Three-dimensional ultrasound. Philadelphia, PA: Lippincott Williams & Wilkins.

    Google Scholar 

  4. Picard, M., Popp, R., & Weyman, A. (2002). Assessment of left ventricular function by echocardiography: A technique in evolution. Journal of the American Society of Echocardiography, 21(3), 14–21.

    Google Scholar 

  5. Ledesma-Carbayo, M. J., Kybic, J., Desco, M., et al. (2005). Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Transactions on Medical Imaging, 24(9), 1113–1126 (September).

    Article  Google Scholar 

  6. Krucker, J., LeCarpentier, G., Fowlkes, J., & Carson, P. (2000). 3D spatial compounding of ultrasound images using image-based nonrigid registration. Ultrasound in Medicine & Biology, 26(9), 1475–1488.

    Article  Google Scholar 

  7. Slomka, P. J. (2004). Software approach to merging molecular with anatomic information. Journal of Nuclear Medicine, 45(1), 36–45.

    Google Scholar 

  8. Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In European conference on computer vision, Prague, Czech Republic. LNCS (Vol. 3024, pp. 25–36). Berlin: Springer (May).

    Google Scholar 

  9. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., & Schnorr, C. (2005). Variational optical flow computation in real time. IEEE Transactions on Image Processing, 14, 608– 615.

    Article  MathSciNet  Google Scholar 

  10. Mellor, M. (2004). Phase methods for non-rigid medical image registration. Ph.D. thesis, Oxford University.

  11. Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q.C., Katila, T., et al. (2002). A review of cardiac image registration methods. IEEE Transactions on Medical Imaging, 21(9), 1011–1021.

    Article  Google Scholar 

  12. Giachetti, A. (1998). On-line analysis of echocardiographic image sequences. Medical Image Analysis, 2(3), 261–284.

    Article  Google Scholar 

  13. Chalana, V., Linker, D., Haynor, D., & Kim, Y. (1996). A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Transactions on Medical Imaging, 15(3), 290–298.

    Article  Google Scholar 

  14. Herlin, I., & Ayache, N. (1992). Features extraction and analysis methods for sequences of ultrasound images. Image and Vision Computing, 10(10), 673–682.

    Article  Google Scholar 

  15. Zikic, D., Wein, W., Khamene, A., Clevert, D., & Navab, N. (2006). Fast deformable registration of 3d-ultrasound data using a variational approach. In MICCAI. LNCS (Vol. 3216, pp. 915–923). Berlin: Springer.

    Google Scholar 

  16. Foroughi, P., & Abolmaesumi, P. (2005). Elastic registration of 3d ultrasound images. In MICCAI. LNCS (Vol. 3749, pp. 83–90). Berlin: Springer.

    Google Scholar 

  17. Rohr, K., Spengel, H. S., et al. (2001). Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on Medical Imaging, 20(6), 526–534.

    Article  Google Scholar 

  18. Morrone, M. C., & Owens, R. A. (1987). Feature detection from local energy. Pattern Recognition Letters, 6(5), 303–313.

    Article  Google Scholar 

  19. Mulet-Parada, M., & Noble, A. (1998). 2d+t acoustic boundary detection in echocardiography. In MICCAI. LNCS (Vol. 1496, pp. 806–813). Berlin: Springer.

    Google Scholar 

  20. Mellor, M., & Brady, M. (2005). Non-rigid multimodal image registration using local phase. In MICCAI. LNCS (Vol. 3216, pp. 789–796). Berlin: Springer.

    Google Scholar 

  21. Grau, V., Becher, H., & Noble, J. A. (2006). Phase-based registration of multi-view real-time three-dimensional echocardiographic sequences. In MICCAI. LNCS (pp. 612–619). Berlin: Springer.

    Google Scholar 

  22. Boukerroui, D., Noble, A., & Brady, M. (2004). On the choice of band-pass quadrature filters. Journal of Mathematical Imaging and Vision, 21(1), 53–80.

    Article  MathSciNet  Google Scholar 

  23. Felsberg, M., & Sommer, G. (2000). A new extension of linear signal processing for estimating local properties and detecting features. In DAGM, (pp. 195–202).

  24. Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Woo Hong.

Additional information

This research was partially supported by the Ministry of Knowledge Economy, Korea, under the Home Network Research Center–Information Technology Research Center support program supervised by the Institute of Information Technology Assessment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, J., Hong, BW., Hu, CH. et al. Non-Rigid Ultrasound Image Registration Based on Intensity and Local Phase Information. J Sign Process Syst Sign Image Video Technol 54, 33–43 (2009). https://doi.org/10.1007/s11265-008-0218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0218-2

Keywords

Navigation