Abstract
Breast cancer is a serious public health problem in several countries. Computer-aided detection/diagnosis systems (CAD/CADx) have been used with relative success in aid of health care professionals. The goal of such systems is not to replace the professionals, but to join forces in order to detect the different types of cancer at an early stage. The main contribution of this work is the presentation of a methodology for detecting masses in digitized mammograms using the growing neural gas algorithm for image segmentation and Ripley’s K function to describe the texture of segmented structures. The classification of these structures is accomplished through support vector machines which separate them in two groups, using shape and texture measures: masses and non-masses. The methodology obtained 89.30% of accuracy and a rate of 0.93 false positives per image.
Similar content being viewed by others
References
A.C.S. (2006). Learn about breast cancer. Available at http://www.cancer.org.
Instituto Nacional do Câncer—INCA. (2006). Estimativa 2006: Incidência de Câncer no Brasil. Rio de Janeiro: INCA, 2005. Available at http://www.inca.gov.br/estimativa/2006/versaofinal.pdf. Accessed in 19 feb.
Instituto Nacional do Câncer—INCA. (2006). Câncer no Brasil: dados dos registros de base populacional, volume 3. Rio de Janeiro: INCA, 2003. Available at http://www.inca.gov.br/regpop/2003/versaofinal.pdf. Accessed in 15 sep.
Silva, D. F. (2006). Câncer de mama em mulheres no Maranhão: estudo de sobrevida no centro de assistência de Alta Complexidade em oncologia (CACON) em São Luís. Masters dissertation (Masters in Health Sciences). Federal University of Maranhão.
Sampat, P., Markey, M. K., & Bovik, A. C. (2005). Computer-aided detection and diagnosis in mammography. Computer-Aided Detection and Diagnosis in Mammography. Handbook of Image and Video Processing, 2ed.
Rezai-Rad, G., & Jamarani, S. (2005). Detecting microcalcification clusters in digital mammograms using combination of wavelet and neural network, cgiv, p. 197–201, International Conference on Computer Graphics, Imaging and Visualization (CGIV'05).
Bellotti, R., de Carlo, F., Tangaro, S., Gargano, G., Maggipinto, G., Castellano, M., et al. (2006). A completely automated CAD system for mass detection in a large mammographic database. Medical Physics, 33, 3066–3075.
Chan, H., Wei, J., Sahiner, B., Rafferty, E., Wu, T., Roubidox, M., et al. (2005). Computer-aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary experience. Radiology, 237(3), 1075–1080.
Braz Junior, G., Silva, E. C., de Paiva, A. C., Silva, A. C., & Gattass, M. (2007). Breast Tissues Mammograms Images Classification using Moran's Index, Geary's Coefficient and SVM. In: 14th International Conference on Neural Information Processing (ICONIP 2007), 2007, Kitakyushu. Lecture Notes Computer Science—LNCS.
Martins, L. de O., Silva, E. C., Silva, A. C., Paiva, A. C., & Gattass, M. (2007b). Classification of breast masses in mammogram images using Ripley’s K function and support vector machine. MLDM, 2007, 784–794.
Fritzke, B. (1995). A growing neural gas network learns topologies. In E. G. Tesauro, D. S. Touretzky, & E. T. K. Leen (Eds.), Advances in Neural Information Processing Systems 7 (pp. 625–632). Cambridge MA: MIT Press.
Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society, B, 39, 172–212.
Haykin, S. (2001). Redes Neurais: Princípios e Prática (2nd ed.). Porto Alegre: Bookman.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Kluwer Academic Publishers.
Heath, M., Bowyer, K., & Kopans, D. (1998). Current status of the digital database for screening mammography. Digital Mammography (pp. 457–460). Kluwer.
Martinez, T., & Schulten, K. (1991). A neural gas network learns topologies. Artificial Neural Networks. Elsevier.
Gonzalez, R. C., & Woods, R. E. (1992). Digital image processing (3rd ed.). Reading, MA: Addison-Wesley.
Meyer-Baese, A. (2003). Pattern recognition for medical imaging. Elsevier.
Kovalev, V. A., Kruggel, F., Gertz, H. J., & Cramon, D. Y. V. (2001). Three-dimensional texture analysis of MRI brain datasets. IEEE Transactions on Medical Imaging, 20, 424–433.
Li, X. (2001). Texture analysis for optical coherence tomography image. Master’s thesis, The University of Arizona.
Mudigonda, N. R., Rangayyan, R. M., & Desautels, J. E. L. (2000). Gradient and texture analysis for the classification of mammographic masses. IEEE Transactions on Medical Imaging, 19, 1032–1043.
Scheuerell, M. D. (2004). Quantifying aggregation and association in three dimensional landscapes. Ecology, 85, 2332–234.
Urban, D. L. (2003). Spatial analysis in ecology—point pattern analysis. Available at: http://www.nicholas.duke.edu/lel/env352/ripley.pdf.
Papoulis, A., & Pillai., S. U. (2002). Probability, random variables and stochastic processes. (4th edn.). McGraw-Hill.
Dale, M. R. T., Dixon, P., Fortin, M. J., Legendre, P., Myers, D. E., & Rosenberg, M. S. (2002). Conceptual and mathematical relationships among methods for spatial analysis. Ecography, 25, 558577.
Martins, L. de O., Braz Junior, G. S., Silva, E. C., Silva, A. C., & Paiva, A. C. (2007). Classification of breast tissues in mammogram images using Ripley’s K function and support vector machine. ICIAR, 2007, 899–910.
University of Guelph. (2001). Shape Analysis & Measurement, CIS*6320, Lecture Notes.
Rangayyan, R. M., El-Faramawy, N. M., Desautels, J. E. L., & Alim, O. A. (1997). Measures of acutance and shape for classification of breast tumors, Associate Member, IEEE.
Sousa, J. R. F. S., Silva, A. C., & Paiva, A. C. (2007). Lung Structures Classification Using 3D Geometric Measurements and SVM. In: 12th Iberoamerican Congress on Pattern Recognition—CIARP 2007, 2007, Valparaiso. Lecture Notes Computer Science—LNCS. (pp. 783–792). Berlin: Springer-Verlag, v. 4756.
Azpitarte, R. L. (2006). Aportaciones al Diagnóstico de Cáncer Asistido por Ordenador. Tese de Doutorado. Universidad Politécnica de Valencia.
Chang, C.-C., & Lin, C.-J. (2007). LIBSVM: a Library for Support Vector Machines. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf. Accessed in 08 oct.
Acknowledgements
The authors acknowledge CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)—process 0044/05-9, and FAPEMA (Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão) for their financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Oliveira Martins, L., Silva, A.C., de Paiva, A.C. et al. Detection of Breast Masses in Mammogram Images Using Growing Neural Gas Algorithm and Ripley’s K Function. J Sign Process Syst Sign Image Video Technol 55, 77–90 (2009). https://doi.org/10.1007/s11265-008-0209-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11265-008-0209-3