Abstract
A number of studies performed on biological systems have shown that redox-active metals such as iron and copper as well as other transition metals can undergo redox cycling reactions and produce reactive free radicals termed also reactive oxygen species (ROS) or reactive nitrogen species (RNS). The most representative examples of ROS and RNS are the superoxide anion radical and nitric oxide, respectively, both playing a dual role in biological systems. At low/moderate concentrations of ROS and RNS, they can be involved in many physiological roles such as defense against infectious agents, involvement in a number of cellular signaling pathways and other important biological processes. On the other hand, at high concentrations, ROS and RNS can be important mediators of damage to biomolecules involving DNA, membrane lipids, and proteins. One of the most damaging ROS occurring in biological systems is the hydroxyl radical formed via the decomposition of hydrogen peroxide catalyzed by traces of iron, copper and other metals (the Fenton reaction). The hydroxyl radical is known to react with the DNA molecule, forming 8-OH-Guanine adduct, which is a good biomarker of oxidative stress of an organism and a potential biomarker of carcinogenesis. This review discusses the role of iron and copper in uncontrolled formation of ROS leading to various human diseases such as cancer, cardiovascular disease, and neurological disorders (Alzheimer’s disease and Parkinson’s disease). A discussion is devoted to the various protective antioxidant networks against the deleterious action of free radicals. Metal-chelation therapy, which is a modern pharmacotherapy used to chelate redox-active metals and remove toxic metals from living systems to avoid metal poisoning, is also discussed.
Similar content being viewed by others
References
Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA
Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314
Bertini I, Cavallaro G (2008) J Biol Inorg Chem 13:3–14
Valko M, Morris H, Cronin MTD (2005) Curr Med Chem 12:1161–1208
Buettner GR (1993) Arch Biochem Biophys 300:535–543
Prousek J (2007) Pure Appl Chem 79:2325–2338
Liochev SI, Fridovich I (2002) Redox Rep 7:55–57
Kell DB (2010) Arch Toxicol 84:825–889
Kell DB (2009) BMC Med Genomics 2:2
Jomova K, Valko M (2011) Toxicology 283:65–87
Jomova K, Valko M (2011) Curr Pharm Des 17:3460–3473
Schafer FQ, Buettner GR (2001) Free Radic Biol Med 30:1191–1212
Liochev SI, Fridovich I (1994) Free Radic Biol Med 16:29–33
Kakhlon O, Cabantchik ZI (2002) Free Radic Biol Med 33:1037–1046
Gaetke LM, Chow CK (2003) Toxicology 189:147–163
Kuo YM, Zhou B, Cosco D, Gitschier J (2001) Proc Natl Acad Sci USA 98:6836–6841
Cadet J, Douki T, Ravanat JL (2011) Mutat Res 711:3–12
Cai X, Pan N, Zou G (2007) Biometals 20:1–11
Udenfriend S, Clark CT, Axelrod J, Brodie BB (1954) J Biol Chem 208:731–739
Suh J, Zhu BZ, Frei B (2003) Free Radic Biol Med 34:1306–1314
Shigenaga MK, Gimeno CJ, Ames BN (1989) Proc Natl Acad Sci USA 86:9697–9701
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Chem Biol Interact 160:1–40
Stadtman ER (2004) Curr Med Chem 11:1105–1112
Stoltzfus R (2001) J Nutr 131:565S–567S
Toyokuni S (1996) Free Radic Biol Med 20:553–566
Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford
LaMarca BD, Gilbert J, Granger JP (2008) Hypertension 51:982–988
Marnett LJ (1999) Mutat Res 424:83–95
Skrzydlewska E, Sulkowski S, Koda M, Zalewski B, Kanczuga-Koda L, Sulkowska M (2005) World J Gastroenterol 11:403–406
Valko M, Morris H, Mazúr M, Rapta P, Bilton RF (2001) Biochim Biophys Acta 1527:161–166
Jomova K, Vondrakova D, Lawson M, Valko M (2010) Mol Cell Biochem 345:91–104
Zhu X, Castellani RJ, Moreira PI, Aliev G, Shenk JC, Siedlak SL, Harris PL, Fujioka H, Sayre LM, Szweda PA, Szweda LI, Smith MA, Perry G (2012) Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2011.11.004
Bush AI (2003) Trends Neurosci 26:207–214
Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) J Struct Biol 130:184–208
Butterfield DA, Sultana R (2011) J Amino Acids (article ID 198430)
Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116
Jenner P (2003) Ann Neurol 53:S26–S36
Chinta SJ, Andersen JK (2008) Biochim Biophys Acta 1780:1362–1367
Andersen JK (2004) Nature Med 10:S18–S25
Bamonti F, Fulgenzi A, Novembrino C, Ferrero ME (2011) Biometals 24:1093–1098
Bendova P, Mackova E, Haskova P, Vavrova A, Jirkovsky E, Sterba M, Popelova O, Kalinowski DS, Kovarikova P, Vavrova K, Richardson DR, Simunek T (2010) Chem Res Toxicol 23:1105–1114
Dairam A, Fogel R, Daya S, Limson JL (2008) J Agric Food Chem 56:3350–3356
Kalinowski DS, Richardson DR (2007) Chem Res Toxicol 20:715–720
Welch KD, Davis TZ, Van Eden ME, Aust SD (2002) Free Radic Biol Med 32:577–583
Braun V, Endriss F (2007) Biometals 20:219–231
Le CT, Hollaar L, Van der Valk EJ, Van der Laarse A (1994) J Mol Cell Cardiol 26:877–887
Bush AI (2002) Neurobiol Aging 23:1031–1038
Horwitz LD, Sherman NA, Kong YN (1998) Proc Natl Acad Sci 95:5263–5268
De Vries B, Walter SJ, Von Bonsdorff L (2004) Transplantation 77:669–675
Kontoghiorghes GJ (2006) Hemoglobin 30:183–200
Wang T, Guo Z (2006) Curr Med Chem 13:525–537
Khan G, Merajver S (2009) Expert Opin Investig Drugs 18:541–548
Gupte A, Mumper RJ (2009) Cancer Treat Rev 35:32–46
Hyman LM, Stephenson CJ, Dickens MG, Shimizu KD, Franz KJ (2010) Dalton Trans 39:568–576
Pierre JL, Baret P, Serratrice G (2003) Curr Med Chem 10:1077–1084
Bush AI (2008) J Alzheimers Dis 15:223–240
Miklos D, Segla P, Palicova M, Kopcova M, Melnik M, Valko M, Glowiak T, Korabik M, Mrozinski J (2001) Polyhedron 20:1867–1874
Moncol J, Kalinakova B, Svorec J, Kleinova M, Koman M, Hudecova D, Melnik M, Mazur M, Valko M (2004) Inorg Chim Acta 357:3211–3222
Shimada H, Takahashi M, Shimada A, Okawara T, Yasutake A, Imamura Y, Kiyozumi M (2005) Toxicol Appl Pharmacol 202:59–67
Acknowledgments
This work was supported by Scientific Grant Agency (VEGA Projects #1/0856/11 and #1/0289/12) and Research and Development Agency of the Slovak Republic (Contracts APVV-0202-10 and APVV-0339-10).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Jomova, K., Baros, S. & Valko, M. Redox active metal-induced oxidative stress in biological systems. Transition Met Chem 37, 127–134 (2012). https://doi.org/10.1007/s11243-012-9583-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11243-012-9583-6