[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Ca2+ channels and Ca2+ signals involved in abiotic stress responses in plant cells: recent advances

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) signals are essential transducers and regulators in many adaptive and developmental processes in plants. Protective responses of plants to a variety of environmental stress factors are mediated by transient changes of Ca2+ concentration in plant cells. Ca2+ ions are quickly transported by channel proteins present on the plasma membrane. During responses to external stimuli, various signal molecules are transported directly from extracellular to intracellular compartments via Ca2+ channel proteins. Three types of Ca2+ channels have been identified in plant cell membranes: voltage-dependent Ca2+-permeable channels (VDCCs), which is sorted to depolarization-activated Ca2+-permeable channels (DACCs) and hyperpolarization-activated Ca2+-permeable channels (HACCs), voltage-independent Ca2+-permeable channels (VICCs). They make functions in the abiotic stress such as TPCs, CNGCs, MS channels, annexins which distribute in the organelles, plasma membrane, mitochondria, cytosol, intracelluar membrane. This review summarizes recent advances in our knowledge of many types of Ca2+ channels and Ca2+ signals involved in abiotic stress resistance and responses in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Aleynova OA, Dubrovina AS, Kiselev KV (2017) Activation of stilbene synthesis in cell cultures of vitis amurensis, by calcium-dependent protein kinases vacpk1, and vacpk26. Plant Cell Tissue Org Cult 130:141–152

    Article  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Laurière C (2005) Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol 138:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boustead CM, Smallwood M, Small H, Bowles DJ, Walker JH (1989) Identification of calcium-dependent phospholipid-binding proteins in higher plant cells. FEBS Lett 244:456–460

    Article  CAS  Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capoen W et al (2011) Nuclear membranes control symbiotic calcium signaling of legumes. Proc Natl Acad Sci USA 108:14348–14353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charpentier M, Oldroyd GED (2013) Nuclear calcium signaling in plants. Plant Physiol 163:496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charpentier M, Bredemeier R, Wanner G et al (2008) Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20(12):3467–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charpentier M et al (2016) Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352:1102–1105

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yin H, Gu J, Li L, Liu Z, Jiang X et al (2015) Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri, rehd.). Genomics 105(1):39–52

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Shen D, Samie M, Xu H (2010) Mucolipins intracellular TRPML1–3 channels. FEBS Lett 584:2013–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin K, DeFalco TA, Moeder W, Yoshioka K (2013) The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiol 163:611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Choi WG, Toyota M, Kim SH, Hilleray R, Gillroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci USA 111:6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark GB, Morgan RO, Fernandez M-P, Roux SJ (2012) Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol 196:695–712

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ, Hedrich R (1991). Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153

    Article  CAS  PubMed  Google Scholar 

  • Defalco TA et al (2016a) Multiple calmodulin-binding sites positively and negatively regulate Arabidopsis cyclic nucleotide-gated channel12. Plant Cell 28:1738–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Defalco TA, Moeder W, Yoshioka K (2016b) Opening the gates: insights into cyclic nucleotide-gated channel-mediated signaling. Trends Plant Sci 21(11):903

    Article  CAS  PubMed  Google Scholar 

  • Dietrich P, Anshütz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biol 12:80–93

    Article  CAS  PubMed  Google Scholar 

  • Domijan AM, Kovac S, Abramov AY (2014) Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca2+ signal. J Cell Sci 127:21–26

    Article  CAS  PubMed  Google Scholar 

  • Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2016) Vacpk21, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis, rupr. is involved in grape response to salt stress. Plant Cell Tissue Org Cult 124(1):137–150

    Article  CAS  Google Scholar 

  • Finka A, Cuendet AF, Maathuis FJ, Saidi Y, Goloubinoff P (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24:3333–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer C et al (2013) An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant Cell Physiol 54:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortuna A, Lee J, Ung H, Chin K, Moeder W, Yoshioka K (2015). Crossroads of stress responses, development and flowering regulation–the multiple roles of cyclic nucleotide gated ion channel 2. Plant Signal Behav 10:3

    Article  CAS  Google Scholar 

  • Frietsch S, Wang YF, Sladek C et al (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA 104:14531–14536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Han X, Wu J, Zheng S, Shang Z, Sun D, Zhou R, Li B (2012) A heat-activated calcium-permeable channel Arabidopsis cyclic nucleotide-gated ion channel 6 is involved in heat shock responses. Plant J 70:1059–1069

    Article  CAS  Google Scholar 

  • Gao QF et al (2016) Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci USA 113:3096–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy S, Trewavas A (2001) Signal processing and transduction in plant cell: the end of the beginning? Nat Rev Mol Cell Biol 2:307–314

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57(4):791

    Article  CAS  PubMed  Google Scholar 

  • Gradogna A, Scholz-Starke J, Gutla PVK, Carpaneto A (2009) Fluorescence combined with excised patch: measuring calcium currents in plant cation channels. Plant J 58:175–182

    Article  CAS  PubMed  Google Scholar 

  • Guo KM, Babourina O, Borsics CDA, Rengel T, Z (2008) The cyclic nucleotide-gated channel, atcngc10, influences salt tolerance in arabidopsis. Physiol Plant 134(3):499

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Kurusu T, Okuma E, Nokajima H, Kiyoduka M, Koyano T, Sugiyama Y, Okada K, Koga J, Saji H et al (2012) Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in culture rice cells. J Biol Chem 287:9931–9939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Tang R, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425(6954):196–200

    Article  CAS  PubMed  Google Scholar 

  • Harada A, Sakai T, Okada K (2003) Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA 100:8583–8588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Saito M, Matsuka H, Iida K, Iida H (2004) Functional analysis of a rice putative voltage-dependent Ca2+ channel, OSTPC1, expressed in yeast cell lacking its homologous gene CCH1. Plant Cell Physiol 45:496–500

    Article  CAS  PubMed  Google Scholar 

  • Haswell ES (2007) MscS-like proteins in plants. Curr Top Membr 58(06):329–359

  • Haswell ES, Meyerowitz EM (2006) Mscs-like proteins control plastid size and shape in arabidopsis thaliana. Curr Biol Cb 16(1):1

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  CAS  PubMed  Google Scholar 

  • Hurst AC et al (2008) MscS, the bacterial mechanosensitive channel of small conductance. Int J Biochem Cell Biol 40:581–585

    Article  CAS  PubMed  Google Scholar 

  • Islam MM, Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y (2010) Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure. Plant Cell Physiol 51:302–311

    Article  CAS  PubMed  Google Scholar 

  • Jammes F, Hu HC, Villiers F, Bouten R, Kwak JM (2011) Calcium-permeable channels in plant cells. FEBS J 278:4262–4276

    Article  CAS  PubMed  Google Scholar 

  • Jensen GS, Haswell ES (2012). Functional analysis of conserved motifs in the mechanosensitive channel homolog mscs-like2 from arabidopsis thaliana. PLoS ONE 7(6):e40336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha SK, Sharma M, Pandey GK (2016) Role of cyclic nucleotide gated channels in stress management in plants. Curr Genomics 17(4):315–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Sun L, Song Y, Wang L, Liu L, Zhang L, Liu B, Li N, Miao C, Hao F (2013) AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. J Exp Bot 64:4183–4192

    Article  CAS  PubMed  Google Scholar 

  • Kirpichnikova AA, Rudashevskaya EL, Yemelyanov VV, Shishova MF (2014) Ca2+-transport through plasma membrane as a test of auxin sensitivity. Plants 3:209–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klüsener B, Weiler EW (1999) A calcium-selective channel from root-tip endomembranes of garden cress. Plant Physiol 119:1399–1406

    Article  PubMed  PubMed Central  Google Scholar 

  • Klüsener B, Boheim G, Liss H, Engelberth J, Weiler EW (1995) Gadolinium-sensitive, voltage-dependent calcium release channels in the endoplasmic reticulum of a higher plant mechanoreceptor organ. EMBO J 14:2708–2714

    PubMed  PubMed Central  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150:1394–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugler A, Köhler B, Palme K, Wolff P, Dietrich P (2009) Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurusu T et al (2012) Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC Plant Biol 12(1):1–15

    Article  CAS  Google Scholar 

  • Ladwig F et al (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes cyclic nucleotide-gated channel17, H+-ATPase, and BAK1. Plant Cell 27:1718–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S (2011) Mechanistic analysis of AKT1 regulation by CBL-CIPK-PP2CA interaction. Mol Plant 4:527–536

    Article  CAS  PubMed  Google Scholar 

  • Laohavisit A, Mortimera JC, Demidchika V, Coxon KM, Stancombe MA, Macpherson N, Brownlee C, Hofmann A, Webb AAR, Miedema H et al (2009) Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell 21:479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larisch N, Kirsch SA, Schambony A, Studtrucker T, Bockmann RA, Dietrich P (2016) The function of the two-pore channel TPC1 depends on dimerization of its carboxy-terminal helix. Cell Mol Life Sci 73:256

    Article  CAS  Google Scholar 

  • Laver DR, Kong CHT, Imtiaz MS, Cannell MB (2013) Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol 54:98–100

    Article  CAS  PubMed  Google Scholar 

  • Leterrier M, Barroso JB, Valderrama R, Begara-Morales JC, Sánchez-Calvo B, Chaki M, Luque F, Viñegla B, Palma JM, Corpas FJ (2016) Peroxisomal NADP isocitrate dehydrogenase is required for Arabidopsis stomatal movement. Protoplasma 253:403–415

    Article  CAS  PubMed  Google Scholar 

  • Li X, Garrity AG, Xu H (2013) Regulation of membrane trafficking by signalling on endosomal and lysosomal membranes. J Physiol 591:4389–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Ali R, Berkowitz GA (2006) Characterization ofplant phenotypes associated with loss-of-function ofatcngc1, aplant cyclic nucleotide gated cation channel. Plant Physiol Biochem Ppb 44(7–9):494

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA (2010) Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel 2 acts through nitric oxide to repress senescence programming. Plant Physiol 154:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y et al (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Miedema H, Demidchik V, Véry AA, Bothwell JHF, Brownlee C, Davies JM (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol 179:378–385

    Article  CAS  PubMed  Google Scholar 

  • Morgan AJ, Galione A (2014) Two-pore channels (TPCs): current controversies. BioEssays 36:173–183

    Article  CAS  PubMed  Google Scholar 

  • Munaron L, Antoniotti S, Lovisolo D (2004) Fiorio PlaA. Blocking Ca2+ entry: a way to control cell proliferation. Curr Med Chem 11:1533–1543

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells: specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Mori IC, Munemasa S (2015) Diverse stomatal signaling and the signal integration mechanism. Annu Rev Plant Biol 66:369–392

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y et al (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104(15):3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama Y, Yoshimura K, Iida H (2012) Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response. Nat Commun 3(2):1020

    Article  PubMed  CAS  Google Scholar 

  • Nawaz Z, Kakar KU, Saand MA, Shu QY (2014) Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genom 15(1):1–18

    Article  CAS  Google Scholar 

  • Nomura H, Shiina T (2014) Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. Mol Plant 7:1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S et al (2013) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3:926

    Article  CAS  Google Scholar 

  • Parrington J, Tunn R (2014) Ca2+, signals, naadp and two-pore channels: role in cellular differentiation. Acta Physiol 211(2):285–296

    Article  CAS  Google Scholar 

  • Peiter E (2011) The plant vacuole: emitter and receiver of calcium signals. Cell Calcium 50:120–128

    Article  CAS  PubMed  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM et al (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434(7031):404

    Article  CAS  PubMed  Google Scholar 

  • Petroutsos D, Busch A, Janssen I, Trompelt K, Bergner SV, Weinl S et al (2011) The chloroplast calcium sensor cas is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23(8):2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickard BG, Ding JP (1993) The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre. Aust J Plant Physiol 20:439–459

    Article  CAS  PubMed  Google Scholar 

  • Piñeros M, Tester M (1995) Characterization of a voltage-dependent Ca2+-selective channel from wheat roots. Planta 195:478–488

    Article  Google Scholar 

  • Piñeros M, Tester M (2011) Calcium inhibits dihydropyridine-stimulated increases in opening and unitary conductance of a plant Ca2+ channel. J Membr Biol 240:13–20

    Article  PubMed  CAS  Google Scholar 

  • Ping Z, Yabe I, Muto S (1992) Identification of K+, Cl-, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures. Protoplasma 171:7–18

    Article  CAS  Google Scholar 

  • Pottosin I, Schönknecht G (1996) Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J Membr Biol 152:223–233

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Schönknecht G (2007) Vacuolar calcium channels. J Exp Bot 58:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Bose J, Fuglsang AT, Shabala S (2014) Polyamines cause plasma membrane depolarization, activate Ca2+, and modulate H+-ATPase pump activity in pea roots. J Exp Bot 65:2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Verma R, Gehring C et al (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylylcyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci USA 107:21193–21199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, Knirel YA et al (2015) A lectin s-domain receptor kinase mediates lipopolysaccharide sensing in arabidopsis thaliana. Nat Immunol 16(4):426–433

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema MR, Hedrich R, Geiger D (2012) Anion channels: master switches of stress responses. Trends Plant Sci 17:221–229

    Article  CAS  PubMed  Google Scholar 

  • Saand MA, Xu YP, Li W, Wang JP, Cai XZ (2015) Cyclic nucleotide gated channel gene family in tomato: genome-wide identification and functional analyses in disease resistance. Front Plant Sci 6(303):303

    PubMed  PubMed Central  Google Scholar 

  • Sandra FB, Marıa GV, Vanessa GR, Esther RL, Manuel P, Miguel R, Jose RG, Francisca L (2017) Two-pore channels (TPCs): novel voltage-gated ion channels with pleiotropic functions. Channels 11(1):20–33

    Article  Google Scholar 

  • Schönknecht G (2013) Calcium signals from the vacuole. Plants 2:589–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shih HW et al (2015) The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr Biol 25:3119–3125

    Article  CAS  PubMed  Google Scholar 

  • Siegel RS, Xue SW, Murata Y, Yang YZ, Nishimura N, Wang A, Schroeder JI (2009) Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+ channels in Arabidopsis guard cells. Plant J 59:207–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signalling: an emerging field. J Exp Bot 63:1525–1542

    Article  CAS  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163:471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN et al (2000) Expression of a truncated tobacco ntcbp4 channel in transgenic plants and disruption of the homologous arabidopsis cngc1 gene confer pb2+ tolerance. Plant J Cell Mol Biol 24(4):533–542

    Article  CAS  Google Scholar 

  • Swarbreck SM, Colaço R, Davies JM (2013) Plant calcium-permeable channels. Plant Physiol 163:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R et al (2015) Potato annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. PLoS ONE 10:e0132683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teardo E, Carraretto L, Wagner S et al (2016) Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo. Plant Physiol 173(2):1355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thuleau P, Ward JM, Ranjeva R, Schroeder JI (1994) Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J 13:2970–2975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuncozdemir M, Rato C, Brown E, Rogers S, Mooneyham A, Frietsch S et al. (2013). Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PLoS ONE 8(2):e55277

    Article  CAS  Google Scholar 

  • Tune-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G et al (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161:1010–1020

    Article  CAS  Google Scholar 

  • Venkatachalam K, Wong CO, Zhu MX (2015) The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58:48–56

    Article  CAS  PubMed  Google Scholar 

  • Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C (2010) Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. New Phytol 187(1):23–43

    Article  CAS  PubMed  Google Scholar 

  • Véry AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175

    Article  PubMed  Google Scholar 

  • Wang YJ, Yu JN, Chen T, Zhang ZG, Hao YJ, Zhang JS, Chen SY (2005) Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat. J Exp Bot 56:3051–3060

    Article  CAS  PubMed  Google Scholar 

  • Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, Mori I et al (2013) Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. Plant Physiol 163:578–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiger TM, Hermann A (2014) Cell proliferation, potassium channels, polyamines and their interactions: a mini review. Amino Acids 46(3):681–688

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2009) Depolarization-activated calcium channels shape the calcium signatures induced by low-temperature stress. New Phytol 183:6–8

    Article  CAS  PubMed  Google Scholar 

  • Wilson ME, Jensen GS, Haswell ES (2011) Two mechanosensitive channel homologs influence division ring placement in arabidopsis chloroplasts. Plant Cell 23(1):2939–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Li X, Sun J, Zhang X, Xu T, Zhang J et al (2016) Heat shock responses in populus euphratica, cell cultures: important role of crosstalk among hydrogen peroxide, calcium and potassium. Plant Cell Tissue Org Cult 125(2):215–230

    Article  CAS  Google Scholar 

  • Yuen CCY, Christopher DA (2013) The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana. AoB Plants 5:1–14

    Article  CAS  Google Scholar 

  • Zhang G, Liu Y, Ni Y, Meng Z, Lu T, Li T (2014) Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS ONE 9:e97322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou L, Lan W, Jiang Y, Fang W, Luan S (2014) A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol Plant 7:369–376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (31300223), Natural Science Foundation of Shaanxi Province (2016JM3001), Key Scientific Research Project of Provincial Education Department of Shaanxi (15JS110), Scientific Research form Shaanxi Provincial Department of Education (16JK1756), Opening Foundation of Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, and Training Programs of Innovation and Entrepreneurship for Undergraduate (Northwest University, 2017167). In addition to this, the authors are grateful to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JL was responsible for collecting references and writing articles; YN, JZ, and YZ assisted to write the manuscript, ZM assisted to collect references, XH guided and modified the whole manuscript as the corresponding author.

Corresponding author

Correspondence to Xuan Huang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Communicated by Ming-Tsair Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Niu, Y., Zhang, J. et al. Ca2+ channels and Ca2+ signals involved in abiotic stress responses in plant cells: recent advances. Plant Cell Tiss Organ Cult 132, 413–424 (2018). https://doi.org/10.1007/s11240-017-1350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1350-0

Keywords

Navigation