[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Isolation, molecular cloning and characterization of a cold-responsive gene, AmDUF1517, from Ammopiptanthus mongolicus

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Temperature is one of important factors that influence plant growth and development. Using cDNA-amplified fragment length polymorphism approach, we previously screened 344 temperature-related transcript-derived fragments (TDFs) from Ammopiptanthus mongolicus. In this study, we confirmed that 15 of these TDFs were upregulated in response to low- or high-temperature by using semi-quantitative RT-PCR. Based on the rapid amplification of cDNA ends, PCR and genome walking approaches, full-length cDNA and promoter sequence of AmDUF1517 was cloned and identified. The 906 bp open reading frame of the AmDUF1517 gene encoded for a protein of 301 amino acids residues. The corresponding genomic DNA sequence contains two exons and one intron. Bioinformatic analysis showed that a predicted cleavage site for chloroplast transit peptide, a DUF1517 domain, two transmembrane domains and two putative sumoylation sites were conserved between AmDUF1517 and its homolog from Arabidopsis thaliana (AtDUF1517). We further showed that GFP-tagged AmDUF1517 was indeed targeted to the chloroplast in Arabidopsis protoplast. The transcript levels of AmDUF1517 were increased specifically in leaves in response to cold stress. In addition, treatment of ethylene, salicylic acid, gibberellic acid or NaCl induced the transcription of AmDUF1517. Mutation of DUF1517 in Arabidopsis exhibited enhanced sensitivity to cold stress, which was coupled with increased electrolyte leakage, malondialdehyde content and decreased contents of soluble sugar, proline. Interestingly, heterologous expression of AmDUF1517 in Arabidopsis atduf1517 mutants significantly rescued their cold-sensitive phenotypes. Altogether, our data suggest the potential roles of both AmDUF1517 and AtDUF1517 in the regulation of cold stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

RACE:

Rapid amplification of cDNA ends

TDF:

Transcript-derived fragment

ORF:

Open reading frame

UTR:

Untranslated region

GFP:

Green fluorescent protein

RT-PCR:

Reverse transcription polymerase chain reaction

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  PubMed  CAS  Google Scholar 

  • Canales J, Rueda-Lopez M, Craven-Bartle B, Avila C, Canovas FM (2012) Novel insights into regulation of asparagine synthetase in conifers. Front Plant Sci 3:100. doi:10.3389/fpls.2012.00100

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao P, Song J, Zhou C, Weng M, Liu J, Wang F, Zhao F, Feng D, Wang B (2009) Characterization of multiple cold induced genes from Ammopiptanthus mongolicus and functional analyses of gene AmEBP1. Plant Mol Biol 69:529–539

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Yang KZ, Xia C, Zhang XQ, Chen LQ, Ye D (2010) Characterization of DUF724 gene family in Arabidopsis thaliana. Plant Mol Biol 72:61–73

    Article  PubMed  CAS  Google Scholar 

  • Cao HX, Sun CX, Shao HB, Lei XT (2011) Effects of low temperature and drought on the physiological and growth changes in oil palm seedlings. Afr J Biotechol 10:2630–2637

    CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dong QL, Liu DD, An XH, Hu DG, Yao YX, Hao YJ (2011) MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. J Plant Physiol 168:2124–2133

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Wu Y, Wang Y, Chen Y, Chu C (2009) OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230:227–238

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Yu Y, Xia X, Yin W (2010) Identification and functional characterisation of the promoter of the calcium sensor gene CBL1 from the xerophyte Ammopiptanthus mongolicus. BMC Plant Biol 10:18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo H, Pei X, Wan F, Cheng H (2011) Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum. Mol Biol Rep 38:4651–4656

    Article  PubMed  CAS  Google Scholar 

  • Hansen SF, Harholt J, Oikawa A, Scheller HV (2012) Plant glycosyltransferases beyond CAZy: a perspective on DUF families. Front Plant Sci 3:59. doi:10.3389/fpls.2012.00059

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jensen JK, Kim H, Cocuron JC, Orler R, Ralph J, Wilkerson CG (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J 66:387–400

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3:1848–1861

    Article  PubMed  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Lu C, Shen X, Yin W (2006) Characterization and function analysis of a cold-induced AmCIP gene encoding a dehydrin-like protein in Ammopiptanthus mongolicus. DNA Seq 17:342–349

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Shi J, Lu C (2013a) Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. BMC Plant Biol 13:88

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu W, Yu K, He T, Li F, Zhang D, Liu J (2013b) The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J 2013:1–7

    Google Scholar 

  • Medina J, Catala R, Salinas J (2011) The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Sci 180:3–11

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Naser L, Kourosh V, Bahman K, Reza A (2010) Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regiaL.) during germination. Fruits 65:97–112

    Article  CAS  Google Scholar 

  • Secchi F, Lovisolo C, Uehlein N, Kaldenhoff R, Schubert A (2007) Isolation and functional characterization of three aquaporins from olive (Olea europaea L.). Planta 225:381–392

    Article  PubMed  CAS  Google Scholar 

  • Song J, Liu J, Weng M, Huang Y, Luo L, Cao P, Sun H, Zhao J, Feng D, Wang B (2013) Cloning of galactinol synthase gene from Ammopiptanthus mongolicus and its expression in transgenic Photinia serrulata plants. Gene 513:118–127

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Cai H, Ji W, Luo X, Wang Z, Wu J, Wang X, Cui L, Wang Y, Zhu Y, Bai X (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71C:22–30

    Article  CAS  Google Scholar 

  • Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866

    Article  PubMed  CAS  Google Scholar 

  • von Koskull-Doring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457

    Article  CAS  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Warren GJ (1998) Cold stress: manipulating freezing tolerance in plants. Curr Biol 8:R514–R516

    Article  PubMed  CAS  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Duan L, Li Z (2011) Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance. Plant Sci 181:405–411

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Li J, Wang X, Chen J (2011) OVP1, a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiol Biochem 49:33–38

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Key Project for Breeding Genetic Modified Organisms (2011ZX08012-002) and the National Natural Science Foundation of China (31171905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, L., Cheng, H. Isolation, molecular cloning and characterization of a cold-responsive gene, AmDUF1517, from Ammopiptanthus mongolicus . Plant Cell Tiss Organ Cult 117, 201–211 (2014). https://doi.org/10.1007/s11240-014-0433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0433-4

Keywords

Navigation