[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A review of modern caching strategies in named data network: overview, classification, and research directions

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Nowadays, Named data networking (NDN) is an extended form of Content-Centric Networking, which is a significant one of the Information Centric Networking paradigm. It is critical for accessing the majority of internet-based applications, as access to content is determined via its content name rather than its physical host location. Furthermore, the current Internet design is unsuitable for the enormous volume of Internet traffic. As a result, the paradigm shifts from a location-based to a content-based one. The most important area to be explored in NDN architecture is the distribution of data in-network (data caching), which is very helpful for the subscribers to get the required content from the nearest caching node, however, this is costly due to high bandwidth and popularity. In order to achieve higher cache performance, the cache needs to be managed using a more efficient technique. There are numerous content placement and replacement strategies to manage an NDN-based cache, this work focuses on reviewing cache placement and replacement strategies that address the problem of managing in NDN architecture. In this paper, an overview has been provided with modern caching strategies and related issues such as caching characteristics, caching challenges, caching simulated environment, and caching evaluation metrics. The main focus is also to present useful research papers for a community of researchers interested in the field of NDN so that they can get an overview of what studies and topics have been and are being designed and developed in this particular caching area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Haji, L. M., Ahmad, O. M., Zeebaree, S. R. M., Dino, H. I., Zebari, R. R., & Shukur, H. M. (2020). Impact of cloud computing and Internet of Things on the future internet. Technology Reports of Kansai University, 62(5), 2179–2190.

    Google Scholar 

  2. Yovita, L. V., & Syambas, N. R. (2018). Caching on named data network: A survey and future research. International Journal of Electrical & Computer Engineering, 8(6), 4456. https://doi.org/10.11591/ijece.v8i6.pp4456-4466

    Article  Google Scholar 

  3. Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornton, J. D., Smetters, D. K., Zhang, B., Tsudik, G., Massey, D., & Papadopoulos, C. (2010). NDN Project 2010. Relatório Técnico NDN-0001, Xerox Palo Alto Res. Center-PARC (Vol. 157, No. October, pp. 1–24). http://www.named-data.net/techreport/TR001ndn-proj.pdf

  4. Lee, S., Yeom, I., & Kim, D. (2020). T-Caching: Enhancing feasibility of in-network caching in ICN. IEEE Transactions on Parallel and Distributed Systems, 31(7), 1486–1498. https://doi.org/10.1109/TPDS.2020.2970702

    Article  Google Scholar 

  5. Alubady, R., Hassan, S., & Habbal, A. (2018). Pending interest table control management in named data network. Journal of Network and Computer Applications, 111, 99–116. https://doi.org/10.1016/j.jnca.2017.11.002

    Article  Google Scholar 

  6. Rahel, S., Jamali, A., & El Kafhali, S. (2018). Energy-efficient on caching in named data networking: A survey. In Proceedings of the 2017 international conference of cloud computing technologies and applications CloudTech 2017 (Vol. 2018-Janua, pp. 1–8). https://doi.org/10.1109/CloudTech.2017.8284723

  7. Chen, C., Wang, C., Qiu, T., Atiquzzaman, M., & Wu, D. O. (2020). Caching in vehicular named data networking: Architecture, schemes and future directions. IEEE Communications Surveys & Tutorials, 22(4), 2378–2407. https://doi.org/10.1109/COMST.2020.3005361

    Article  Google Scholar 

  8. Alubady, R., Hassan, S., & Habbal, A. (2020). The role of management techniques for high-performance pending interest table: A survey. In Advances in intelligent systems and computing (Vol. 1073, pp. 569–582). https://doi.org/10.1007/978-3-030-33582-3_53

  9. Mayasari, R., & Syambas, N. R. (2020). Machine learning on named data network: A survey routing and forwarding strategy. https://doi.org/10.1109/TSSA51342.2020.9310909

  10. Negara, R. M., & Rachmana Syambas N. (2020). Caching and machine learning integration methods on named data network: A survey. https://doi.org/10.1109/TSSA51342.2020.9310811

  11. Saxena, D., Raychoudhury, V., Suri, N., Becker, C., & Cao, J. (2016). Named data networking: A survey. Computer Science Review, 19, 15–55. https://doi.org/10.1016/j.cosrev.2016.01.001

    Article  Google Scholar 

  12. Chand, M. (2019). A comparative survey on different caching mechanisms in named data networking (NDN) architecture. International Journal of Emerging Technologies and Innovative Research, 6(4), 264–271.

    Google Scholar 

  13. Lehmann, M. B., Barcellos, M. P., & Mauthe, A. (2016). Providing producer mobility support in NDN through proactive data replication. In Proceedings of the NOMS 2016 - 2016 IEEE/IFIP network operations and management symposium (No. Noms, pp. 383–391). https://doi.org/10.1109/NOMS.2016.7502835

  14. Ahlgren, B., Dannewitz, C., Imbrenda, C., & Kutscher, D. (2012). A survey of information-centric networking. IEEE Communications Magazine, 50(7), 26–36.

    Article  Google Scholar 

  15. Bari, M. F., Chowdhury, S. R., Ahmed, R., Boutaba, R., & Mathieu, B. (2012). A survey of naming and routing in information-centric networks. IEEE Communications Magazine, 50(12), 44–53. https://doi.org/10.1109/MCOM.2012.6384450

    Article  Google Scholar 

  16. Fan, C., Shannigrahi, S., Papadopoulos, C. & Partridge, C. (2020). Discovering in-network caching policies in NDN networks from a measurement perspective. In ICN 2020—Proceedings of the 7th ACM conference on information-centric networking (pp. 106–116). https://doi.org/10.1145/3405656.3418711

  17. Salman, M. (2016). A distributed sources locator model for name resolution in named data network. Universiti Utara Malaysia.

    Google Scholar 

  18. Din, I. U., Hassan, S., Khan, M. K., Guizani, M., Ghazali, O., & Habbal, A. (2018). Caching in information-centric networking: Strategies, challenges, and future research directions. IEEE Communications Surveys & Tutorials, 20(2), 1443–1474. https://doi.org/10.1109/COMST.2017.2787609

    Article  Google Scholar 

  19. Xylomenos, G., Ververidis, C. N., Siris, V. A., Fotiou, N., Tsilopoulos, C., Vasilakos, X., Katsaros, K. V., & Polyzos, G. C. (2014). A survey of information-centric networking research. IEEE Communications Surveys and Tutorials, 16(2), 1024–1049. https://doi.org/10.1109/SURV.2013.070813.00063

    Article  Google Scholar 

  20. Zhang, Z., Yu, Y., Zhang, H., Newberry, E., Mastorakis, S., Li, Y., Afanasyev, A., & Zhang, L. (2018). An overview of security support in named data networking. IEEE Communications Magazine, 56(11), 62–68. https://doi.org/10.1109/MCOM.2018.1701147

    Article  Google Scholar 

  21. Kim, D., Bi, J., Vasilakos, A. V., & Yeom, I. (2017). Security of cached content in NDN. IEEE Transactions on Information Forensics and Security, 12(12), 2933–2944. https://doi.org/10.1109/TIFS.2017.2725229

    Article  Google Scholar 

  22. Kumar, N., Singh, A. K., Aleem, A., & Srivastava, S. (2019). Security attacks in named data networking: A review and research directions. Journal of Computer Science and Technology, 34(6), 1319–1350. https://doi.org/10.1007/s11390-019-1978-9

    Article  Google Scholar 

  23. Rath, H. K., Panigrahi, B., & Simha, A. (2016). On cooperative on-path and off-path caching policy for information centric networks (ICN). In Proceedings of the international conference on advanced information networking and applications (AINA) (Vol. 2016-May, pp. 842–849). https://doi.org/10.1109/AINA.2016.131

  24. Rezazad, M., & Tay, Y. C. (2020). Decoupling NDN caches via CCndnS: Design, analysis, and application. Computer Communications, 151(December), 338–354. https://doi.org/10.1016/j.comcom.2019.12.053

    Article  Google Scholar 

  25. Xu, X., Feng, C., Shan, S., Zhang, T., & Loo, J. (2020). Proactive edge caching in content-centric networks with massive dynamic content requests. IEEE Access, 8, 59906–59921. https://doi.org/10.1109/ACCESS.2020.2983068

    Article  Google Scholar 

  26. Shuja, J., Bilal, K., Alasmary, W., Sinky, H., & Alanazi, E. (2021). Applying machine learning techniques for caching in next-generation edge networks: A comprehensive survey. Journal of Network and Computer Applications, 12, 103005. https://doi.org/10.1016/j.jnca.2021.103005

    Article  Google Scholar 

  27. Lei, K., Fang, J., Zhang, Q., Lou, J., Du, M., Huang, J., Wang, J., & Xu, K. (2020). Blockchain-based cache poisoning security protection and privacy-aware access control in NDN vehicular edge computing networks. Journal of Grid Computing, 18, 593–613. https://doi.org/10.1007/s10723-020-09531-1

    Article  Google Scholar 

  28. Nguyen, Q. N., & López, J. (2020). Adaptive caching for beneficial content distribution in information-centric networking. In Proceedings of the international conference on information networking (ICOIN) (pp. 535–540). https://doi.org/10.1109/icoin48656.2020.9016549

  29. Ghasemi, C., Yousefi, H., & Zhang, B. (2021). Internet-scale video streaming over NDN. IEEE Network, 35(5), 174–180. https://doi.org/10.1109/MNET.121.1900574

    Article  Google Scholar 

  30. Meddeb, M., Dhraief, A., Belghith, A., Monteil, T., Drira, K., & Mathkour, H. (2019). Least fresh first cache replacement policy for NDN-based IoT networks. Pervasive and Mobile Computing, 52, 60–70. https://doi.org/10.1016/j.pmcj.2018.12.002

    Article  Google Scholar 

  31. Jiang, X., & Bi, J. (2014). NCDN: CDN enhanced with NDN. In Proceedings of the IEEE INFOCOM (pp. 440–445). https://doi.org/10.1109/INFCOMW.2014.6849272

  32. Afanasyev, A., Moiseenko, I., & Zhang, L. (2012). ndnSIM: NDN simulator for NS-3. NDN, Tech. Rep. NDN-0005 (pp. 1–7). http://named-data.net/techreport/TR005-ndnsim.pdf

  33. “GitHub - Mesarpe/Socialccnsim: Social CCN Sim is a CCN Simulator, Which Represents Interaction of Users in a CCN Network. (2017). Retrieved November 20, 2021, from https://github.com/mesarpe/socialccnsim

  34. Saino, L., Psaras, I., & Pavlou, G. (2014). Icarus: A caching simulator for information centric networking (ICN). In SIMUTools 2014—7th international conference on simulation tools and techniques (pp. 66–75). https://doi.org/10.4108/icst.simutools.2014.254630

  35. “Mininet Overview - Mininet. (2015). Retrieved November 20, 2021, from http://mininet.org/overview/

  36. Chiocchetti, R., Rossi, D., & Rossini, G. (2013). ccnSim: An highly scalable CCN simulator. IEEE International Conference on Communications. https://doi.org/10.1109/ICC.2013.6654874

    Article  Google Scholar 

  37. Tortelli, M., Rossi, D., Boggia, G., & Grieco, L. A. (2016). ICN software tools: Survey and cross-comparison. Simulation Modelling Practice and Theory, 63, 23–46. https://doi.org/10.1016/j.simpat.2016.01.015

    Article  Google Scholar 

  38. Karami, A. (2015). ACCPndn: Adaptive congestion control protocol in named data networking by learning capacities using optimized time-lagged feedforward neural network. Journal of Network and Computer Applications, 56, 1–18. https://doi.org/10.1016/j.jnca.2015.05.017

    Article  Google Scholar 

  39. Khelifi, H., Luo, S., Nour, B. & Moungla, H. (2019). A QoS-aware cache replacement policy for vehicular named data networks. https://doi.org/10.1109/GLOBECOM38437.2019.9013461

  40. Zhang, R., Liu, J., Huang, T., Xie, R., Yu, F. R., & Liu, Y. (2020). Optimal proactive caching placement for named data networking with interest aggregation. https://doi.org/10.1109/GLOBECOM42002.2020.9322369

  41. Brito, G. M., Velloso, P. B., & Moraes, I. M. (2013). Information centric networks: A new paradigm for the internet (1st ed.). John Wiley\& Sons.

  42. Chen, X., Zhang, G., & Cui, H. (2018). Investigating route cache in named data networking. IEEE Communications Letters, 22(2), 296–299. https://doi.org/10.1109/LCOMM.2017.2769680

    Article  Google Scholar 

  43. Xiaoqiang, Z., Min, Z., & Muqing, W. (2016). An in-network caching scheme based on betweenness and content popularity prediction in content-centric networking. In IEEE international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 10–15). https://doi.org/10.1109/PIMRC.2016.7794943

  44. Gui, Y., & Chen, Y. (2020). A cache placement strategy based on compound popularity in named data networking. IEEE Access, 8, 196002–196012. https://doi.org/10.1109/ACCESS.2020.3034329

    Article  Google Scholar 

  45. Ali Naeem, M., Awang Nor, S., Hassan, S., & Kim, B. S. (2019). Compound popular content caching strategy in named data networking. Electronics, 8(7), 771. https://doi.org/10.3390/electronics8070771

  46. Meng, Y., Naeem, M. A., Ali, R., & Kim, B. S. (2019). EHCP: An efficient hybrid content placement strategy in named data network caching. IEEE Access, 7, 155601–155611. https://doi.org/10.1109/ACCESS.2019.2946184

    Article  Google Scholar 

  47. Mun, J. H., & Lim, H. (2017). Cache sharing using bloom filters in named data networking. Journal of Network and Computer Applications, 90(November 2016), 74–82. https://doi.org/10.1016/j.jnca.2017.04.011

    Article  Google Scholar 

  48. Shailendra, S., Sengottuvelan, S., Rath, H. K., Panigrahi, B., & Simha, A. (2016). Performance evaluation of caching policies in NDN—An ICN architecture. In IEEE Region 10 annual international conference, proceedings/TENCON (Vol. 2017, pp. 1117–1121). https://doi.org/10.1109/TENCON.2016.7848182

  49. Gui, Y., & Chen, Y. (2021). A cache placement strategy based on entropy weighting method and TOPSIS in named data networking. IEEE Access, 9, 56240–56252. https://doi.org/10.1109/ACCESS.2021.3071427

    Article  Google Scholar 

  50. Naeem, M. A., Rehman, M. A. U., Ullah, R., & Kim, B. S. (2020). A comparative performance analysis of popularity-based caching strategies in named data networking. IEEE Access, 8, 50057–50077. https://doi.org/10.1109/ACCESS.2020.2980385

    Article  Google Scholar 

  51. Zheng, Q., Kan, Y., Chen, J., & Wang, S. (2019). A cache replication strategy based on betweenness and edge popularity in named data networking. In ICC 2019—2019 IEEE international conference on communications (ICC) (pp 1–7).

  52. Zhang, R., Liu, J., Xie, R., Huang, T., Yu, F. R., & Liu, Y. (2020). Service-aware optimal caching placement for named data networking. Computer Networks. https://doi.org/10.1016/j.comnet.2020.107193

    Article  Google Scholar 

  53. Karami, A., & Guerrero-Zapata, M. (2015). An ANFIS-based cache replacement method for mitigating cache pollution attacks in named data networking. Computer Networks, 80, 51–65. https://doi.org/10.1016/j.comnet.2015.01.020

    Article  Google Scholar 

  54. Alkhazaleh, M., Aljunid, S. A., & Sabri, N. (2019). A review of caching strategies and its categorizations in information centric network. Journal of Theoretical and Applied Information Technology, 97(19), 4996–5011. https://doi.org/10.1109/csnt.2015.119

    Article  Google Scholar 

  55. Kim, D., Lee, S. W., Ko, Y. B., & Kim, J. H. (2015). Cache capacity-aware content centric networking under flash crowds. Journal of Network and Computer Applications, 50, 101–113. https://doi.org/10.1016/j.jnca.2014.06.008

    Article  Google Scholar 

  56. Fang, C., Yu, F. R., Member, S., Huang, T., Liu, J., & Liu, Y. (2016). Distributed energy consumption management in green content-centric networks via dual decomposition. IEEE Systems Journal, 11(2), 625–636. https://doi.org/10.1109/jsyst.2015.2454231

    Article  Google Scholar 

  57. Liu, W. X., Zhang, J., Liang, Z. W., Peng, L. X., & Cai, J. (2017). Content popularity prediction and caching for ICN: A deep learning approach with SDN. IEEE Access, 6, 5075–5089. https://doi.org/10.1109/ACCESS.2017.2781716

    Article  Google Scholar 

  58. Jo, S. K., Wang, L., Kangasharju, J., & Mühlhäuser, M. (2018). Green named data networking using renewable energy. In e-Energy 2018—Proceedings of the 9th ACM international conference on future energy systems (Vol 2018, pp. 414–416). https://doi.org/10.1145/3208903.3212043

  59. Dehghani, F., & Movahhedinia, N. (2019). Energy-delay-aware caching strategy in green CCN using Markov approximation. International Journal of Communication Systems, 32(15), 1–15. https://doi.org/10.1002/dac.4109

    Article  Google Scholar 

  60. Narayanan, A., Verma, S., Ramadan, E., Babaie, P., & Zhang, Z. L. (2018). DEEPCACHE: A deep learning based framework for content caching. In NetAI 2018—Proceedings of the 2018 workshop on network meets AI and ML, Part of SIGCOMM 2018 (pp. 48–53). https://doi.org/10.1145/3229543.3229555

  61. Amadeo, M., Campolo, C., Ruggeri, G., Lia, G., & Molinaro, A. (2020). Caching transient contents in vehicular named data networking: A performance analysis. Sensors, 20(7), 1–17. https://doi.org/10.3390/s20071985

    Article  Google Scholar 

  62. Mishra, G. P., & Dave, M. (2015). A review on content centric networking and caching strategies. In Proceedings—2015 5th international conference on communication systems and network technologies, CSNT 2015 (pp. 925–929). https://doi.org/10.1109/CSNT.2015.119

  63. Naeem, M. A., & Nor, S. A. (2016) .A survey of content placement strategies for content-centric networking. In AIP conference proceedings (Vol. 1761, pp. 020078). https://doi.org/10.1063/1.4960918

  64. Jebur Taher, S., Ghazali, O., & Hassan, S. (2018). A review on cache replacement strategies in named data network. Journal of Telecommunication, Electronic and Computer Engineering, 10(2–4), 53–57.

    Google Scholar 

  65. Shinde, A., & Chaware, S. M. (2019). Content centric networks (CCN): A survey. In Proceedings of the international conference on I-SMAC (IoT in social, mobile, analytics and cloud), I-SMAC 2018 (pp. 595–598). https://doi.org/10.1109/I-SMAC.2018.8653769

  66. Lal, N., Kumar, S., Kadian, G., & Chaurasiya, V. K. (2019). Caching methodologies in content centric networking (CCN): A survey. Computer Science Review, 31, 39–50. https://doi.org/10.1016/j.cosrev.2018.11.001

    Article  Google Scholar 

  67. Amadeo, M. (2021). A literature review on caching transient contents in vehicular named data networking. Telecom, 2(1), 75–92. https://doi.org/10.3390/telecom2010006

    Article  Google Scholar 

  68. Nithin, R., & Sharma, R. (2021). Survey on content forwarding and caching schemes in vehicular named data networks. in 2nd international conference on IoT based control networks and intelligent systems (ICICNIS) (pp. 1–10).

Download references

Funding

Raaid Alubady declare that this work has been composed solely by his group research and that it has not been submitted, in whole or in part, in any previous publication or submitted for any other journals. Except where states otherwise by reference or acknowledgment, the work presented is entirely their own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raaid Alubady.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alubady, R., Salman, M. & Mohamed, A.S. A review of modern caching strategies in named data network: overview, classification, and research directions. Telecommun Syst 84, 581–626 (2023). https://doi.org/10.1007/s11235-023-01015-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01015-3

Keywords

Navigation