Abstract
In recent years, multicast communication is widely used by network providers to deliver multimedia contents. Quality of service (QoS) provisioning is one of the most important issues while transmitting multimedia contents using multicast. Traditional IP multicasting techniques suffer from reliability, scalability and have limitations to provide appropriate QoS for multimedia applications based on service level agreement (SLA). Nowadays, the advent of software defined networking (SDN), enables network providers to manage their networks dynamically and guarantee QoS parameters for customers based on SLA. SDN provides capabilities to monitor network resources and allows to dynamically configure desired multicasting policies. In this paper, we proposed a novel multicasting technique to guarantee QoS for multimedia applications over SDN. To deliver multimedia contents in an efficient manner, our proposed method models multicast routing as a delay constraint least cost (DCLC) problem. As DCLC problem is NP-Complete, we proposed an approximation algorithm using teaching–learning-based optimization to solve this problem. We evaluated our proposed method under different topologies. Experimental results confirmed that our proposed method outperforms IP multicast routing protocol, and it achieves a gain of about 25% for peak signal-to-noise ratio.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Szymanski, T. H., & Gilbert, D. (2010). Design of an iptv multicast system for internet backbone networks. International Journal of Digital Multimedia Broadcasting, 2010(1), 1–14.
Schmitt, M., Redi, J., Cesar, P., & Bulterman, D. (2016). 1 mbps is enough: Video quality and individual idiosyncrasies in multiparty hd videoconferencing. In 2016 Eighth international conference on quality of multimedia experience (QoMEX) (pp. 1–6). IEEE.
Pavli’c, M., & Bratkovi’c, D. (2015). Comparison of different ngn aggregation networks scenarios. In 2015 57th international symposium ELMAR (ELMAR) (pp. 81–84). IEEE.
Lee, J., & de Veciana, G. (2001). Resource and topology discovery for ip multicast using a fan-out decrement mechanism. In INFOCOM 2001. Proceedings of the twentieth annual joint conference of the ieee computer and communications societies, IEEE (Vol. 3, pp. 1627–1635). IEEE.
Gu, W., Zhang, X., Gong, B., & Wang, L. (2015). A survey of multicast in software-defined networking. In 2015 5th international conference on information engineering for mechanics and materials (ICIMM).
Mohammadi, R., Javidan, R., & Keshtgari, M. (2017). OpenIPTV: A comprehensive SDN-based IPTV service framework. Multimedia Systems. https://doi.org/10.1007/s00530-017-0553-x.
Noghani, K. A., & Sunay, M. O. (2014). Streaming multicast video over software-defined networks. In 2014 IEEE 11th international conference on mobile ad hoc and sensor systems (pp. 551–556). IEEE.
Hosseini, M., Ahmed, D. T., Shirmohammadi, S., & Georganas, N. D. (2007). A survey of application-layer multicast protocols. IEEE Communications Surveys & Tutorials, 9(3), 58–74.
Lao, L., Cui, J.-H., Gerla, M., & Chen, S. (2007). A scalable overlay multicast architecture for large-scale applications. IEEE Transactions on Parallel and Distributed Systems, 18(4), 449–459.
Hu, F., Hao, Q., & Bao, K. (2014). A survey on software-defined network and openflow: From concept to implementation. IEEE Communications Surveys & Tutorials, 16(4), 2181–2206.
Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.
Moy, J. (1994). MOSPF: Analysis and Experience. RFC 1585. Internet Engineering Task Force, Fremont. Available from https://tools.ietf.org/html/rfc1585.
Farinacci, D., Liu, C., Deering, S., Estrin, D., Handley, M., & Jacobson, V., et al. (2006). Protocol independent multicast-sparse mode (pim-sm): Protocol specification. RFC 4601.
Ballardie, T., Francis, P., & Crowcroft, J. (1993). Core based trees (CBT). ACM SIGCOMM Computer Communication Review, 23(4), 85–95
McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.
Lara, A., Kolasani, A., & Ramamurthy, B. (2014). Network innovation using openflow: A survey. IEEE Communications Surveys & Tutorials, 16(1), 493–512.
Specification, O. S. (2011). Version 1.2 (wire protocol 0x03). Open Network Foundation.
Sriram, R., Manimaran, G., & Murthy, C. S. R. (1998). Preferred link based delay-constrained least-cost routing in wide area networks. Computer Communications, 21(18), 1655–1669.
Xiao, Y., Thulasiraman, K., Fang, X., Yang, D., & Xue, G. (2012). Computing a most probable delay constrained path: Np-hardness and approximation chemes. IEEE Transactions on Computers, 61(5), 738–744.
Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.
Iyer, A., Kumar, P., & Mann, V. (2014). Avalanche: Data center multicast using software defined networking. In 2014 sixth international conference on communication systems and networks (COMSNETS) (pp. 1–8). IEEE.
Ananta, M. T., Jiang, J.-R., & Muslim, M. A. (2014). Multicasting with the extended dijkstra’s shortest path algorithm for software defined networking. International Journal of Applied Engineering Research, 9(23), 21017–21030.
Bondan, L., Müller, L. F., & Kist, M. (2013). Multiflow: Multicast clean-slate with anticipated route calculation on openflow programmable networks. Journal of Applied Computing Research, 2(2), 68–74.
Thorpe, C., Olariu, C., Hava, A., & McDonagh, P. (2015). Experience of developing an openflow sdn prototype for managing iptv networks. In 2015 IFIP/IEEE international symposium on integrated network management (IM) (pp. 966–971). IEEE.
Marcondes, C. A., Santos, T. P., Godoy, A. P., Viel, C. C., & Teixeira, C. A. (2012). Castflow: Clean-slate multicast approach using in-advance path processing in programmable networks. In IEEE symposium on computers and communications (ISCC). IEEE.
Kotani, D., Suzuki, K., & Shimonishi, H. (2012). A design and implementation of openflow controller handling ip multicast with fast tree switching. In 2012 IEEE/IPSJ 12th international symposium on applications and the internet (SAINT) (pp. 60–67). IEEE.
Coras, F., Domingo-Pascual, J., Maino, F., Farinacci, D., & Cabellos- Aparicio, A. (2014). Lcast: Software-defined inter-domain multicast. Computer Networks, 59, 153–170.
Wang, Z., & Crowcroft, J. (1996). Quality-of-service routing for supporting multimedia applications. IEEE Journal on Selected areas in communications, 14(7), 1228–1234.
Campbell, A., Coulson, G., Garcia, F., Hutchinson, D., & Leopold, H. (1993). Integrated quality of service for multimedia communications. In INFOCOM’ 93. Proceedings. Twelfth annual joint conference of the ieee computer and communications societies. Networking: Foundation for the future, IEEE (pp. 732–739). IEEE.
Egilmez, H. E., Dane, S. T., Bagci, K. T., & Tekalp, A. M. (2012). Openqos: An openflow controller design for multimedia delivery with end-to-end quality of service over software-defined networks. In Signal & Information processing association annual summit and conference (APSIPA ASC), 2012 Asia-Pacific (pp. 1–8). IEEE.
Pantel, L., & Wolf, L. C. (2002). On the impact of delay on real-time multiplayer games. In Proceedings of the 12th international workshop on network and operating systems support for digital audio and video (pp. 23–29). ACM.
Ling, Z., Wei-xiong, D., & Yu-xi, Z. (2010). Delay-constrained multicast routing algorithm based on average distance heuristic. arXiv preprint arXiv:1003.3317.
Xu, Y., & Qu, R. (2012). A hybrid scatter search meta-heuristic for delay constrained multicast routing problems. Applied Intelligence, 36(1), 229–241.
Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica, 20(3), 710–720.
http://mininet.org/download/. Visited on 03/17/2016.
https://www.opendaylight.org/ Visited on 03/17/2016.
Medina, A., Lakhina, A., Matta, I., & Byers, J. (2001). Brite: An approach to universal topology generation. In Proceedings of the ninth international symposium on modeling, analysis and simulation of computer and telecommunication systems, 2001. (pp. 346–353). IEEE.
Waxman, B. M. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(9), 1617–1622.
https://peach.blender.org/. Visited on 03/17/2016.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mohammadi, R., Javidan, R., Keshtgari, M. et al. A novel multicast traffic engineering technique in SDN using TLBO algorithm. Telecommun Syst 68, 583–592 (2018). https://doi.org/10.1007/s11235-017-0409-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-017-0409-x