[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dual band printed patch antenna on ceramic–polytetrafluoroethylene composite material substrate for GPS and WLAN applications

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, a design concept of modified rectangular shape slotted patch antenna with microstrip feed is proposed for GPS and WLAN applications. The proposed simple planar design of the planar antenna is composed of partially extended radiating surface which is loaded with L-shape slot and two wide square slots. The optimized design of the antenna has overall dimension of \(40 \times 40\; \mathrm{mm}^{2}\) and is fabricated on 1.905 mm thick high dielectric substrate \((\varepsilon _{r} = 10.2)\) of high frequency copper laminated ceramic composite substrate. The antenna design, simulation and parametric analysis have been performed on finite element method based full-wave 3D electromagnetic field simulation software. The experimental results show that the fabricated antenna has achieved impedance bandwidths (S11 \(\le -10\) dB) of around 780 MHz (1.13–1.91 GHz) at resonant frequency of 1.48 GHz and 1220 MHz (4.83–6.05 GHz) at resonant frequency of 5.61 GHz respectively. The gain of the fabricated antenna gives maximum value of 3.42 and 4.37 dBi for lower and upper frequency band of operations respectively. The proposed antenna shows almost consistent radiation patterns with adequate radiation efficiency over the frequency bands which make the antenna appropriate for providing services in both L1/L2 GPS and 5.2/5.8 GHz WLAN bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pozar, D. M., & Schaubert, D. H. (Eds.). (1995). Microstrip antennas: The analysis and design of microstrip antennas and arrays. Hoboken, NJ: Wiley.

    Google Scholar 

  2. Ahsan, M. R., Ullah, M. H., & Islam, M. T. (2014). Slot loaded rectangular patch antenna for dual-band operations on glass-reinforced epoxy laminated inexpensive substrate. Journal of Computational Electronics, 13(4), 989–995. doi:10.1007/s10825-014-0621-9.

    Article  Google Scholar 

  3. James, J. R., & Hall, P. S. (1989). Handbook of microstrip antennas (Vol. 2). London: The Institution of Engineering and Technology.

    Book  Google Scholar 

  4. Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). GPS? Theory and practice (5th ed.). Prinz-Eugen: Springer.

    Google Scholar 

  5. Moosazadeh, M., & Kharkovsky, S. (2014). Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 13, 388–391. doi:10.1109/LAWP.2014.2306962.

    Article  Google Scholar 

  6. Chakraborty, U., Kundu, A., Chowdhury, S., & Bhattacharjee, A. (2014). Compact dual band microstrip antenna for IEEE 802.11a WLAN application. IEEE Antennas and Wireless Propagation Letters, 13, 388–391. doi:10.1109/LAWP.2014.2307005.

    Article  Google Scholar 

  7. Hsieh, W.-T., Chang, T.-H., & Kiang, J.-F. (2012). Dual-band circularly polarized cavity-backed annular slot antenna for GPS receiver. IEEE Transactions on Antennas and Propagation, 60(4), 2076–2080. doi:10.1109/TAP.2012.2186229.

    Article  Google Scholar 

  8. Liu, H.-W., Qin, F., Lei, J.-H., Wen, P., Ren, B.-P., & Xiao, X. (2014). Dual-band microstrip-fed bow-tie antenna for GPS and WLAN application. Microwave and Optical Technology Letters, 56(9), 2088–2091. doi:10.1002/mop.28538.

    Article  Google Scholar 

  9. Chen, S., Liu, G., Chen, X., Lin, T., Liu, X., & Duan, Z. (2010). Compact dual-band GPS microstrip antenna using multilayer LTCC substrate. IEEE Antennas and Wireless Propagation Letters, 9, 421–423. doi:10.1109/LAWP.2010.2049822.

    Article  Google Scholar 

  10. Ansari, J. A., Mishra, A., Yadav, N. P., Singh, P., & Vishvakarma, B. R. (2012). Analysis of W-slot loaded patch antenna for dualband operation. AEU-International Journal of Electronics and Communications, 66(1), 32–38. doi:10.1016/j.aeue.2011.04.011.

    Article  Google Scholar 

  11. Rezaeieh, S. A. (2011). Dual band dual sense circularly polarised monopole antenna for GPS and WLAN applications. Electronics Letters, 47(22), 1212–1214. doi:10.1049/el.2011.2252.

    Article  Google Scholar 

  12. Lai, Z., & Yuan, J. (2013). Design of single-layer single-feed patch antenna for GPS and WLAN applications. In Proceedings of the international symposium on antennas & propagation (ISAP) (Vol. 2, pp. 737–739). Nanjing, China.

  13. Chen, S., Fang, M., Dong, D., Han, M., & Liu, G. (2015). Compact multiband antenna for GPS/WiMAX/WLAN applications. Microwave and Optical Technology Letters, 57(8), 1769–1773. doi:10.1002/mop.29189.

    Article  Google Scholar 

  14. Cao, Y. F., Cheung, S. W., & Yuk, T. I. (2015). A multiband slot antenna for GPS/WiMAX/WLAN systems. IEEE Transactions on Antennas and Propagation, 63(3), 952–958. doi:10.1109/TAP.2015.2389219.

    Article  Google Scholar 

  15. Kim, S., Moon, H., Kim, W., Kim, J., & Yoon, Y. (2013). A compact GPS and WLAN PIFA for full metal-rimmed mobile handset using the ground bridges. In Asia-Pacific microwave conference proceedings (APMC) (pp. 648–650). Seoul, Korea. doi:10.1109/APMC.2013.6694893

  16. Daniati, N., Nusantara, H., & Munir, A. (2012). G-patch dualband printed monopole antenna for GPS and WLAN application. In 7th international conference on telecommunication systems, services, and applications (TSSA) (pp. 237–240). Bali, Indonesia. doi:10.1109/TSSA.2012.6366059

  17. Ma, S.-L., & Row, J.-S. (2011). Design of single-feed dual-frequency patch antenna for GPS and WLAN applications. IEEE Transactions on Antennas and Propagation, 59(9), 3433–3436. doi:10.1109/TAP.2011.2161453.

    Article  Google Scholar 

  18. HFSS—High frequency structural simulator. Ansys, Inc., Canonsburg, PA, USA. Retrieved from www.ansys.com

  19. Ullah, M. H., & Islam, M. T. (2013). A compact square loop patch antenna on high dielectric ceramic-PTFE composite material. Applied Physics A: Materials Science & Processing, 113(1), 185–193. doi:10.1007/s00339-012-7511-4.

    Article  Google Scholar 

  20. Liu, W.-C., Wu, C.-M., & Dai, Y. (2011). Design of triple-frequency microstrip-fed monopole antenna using defected ground structure. IEEE Transactions on Antennas and Propagation, 59(7), 2457–2463. doi:10.1109/TAP.2011.2152315.

    Article  Google Scholar 

  21. Ahsan, M. R., Islam, M. T., Ullah, M. H., & Misran, N. (2014). Bandwidth enhancement of a dual band planar monopole antenna using meandered microstrip feeding. The Scientific World Journal, 2014, 1–8. doi:10.1155/2014/856504.

  22. Chen, Z. N., See, T. S. P., & Qing, X. (2007). Small printed ultrawideband antenna with reduced ground plane effect. IEEE Transactions on Antennas and Propagation, 55(2), 383–388. doi:10.1109/TAP.2006.889823.

    Article  Google Scholar 

  23. Blake, L. V., & Long, M. W. (2009). Antennas: Fundamentals, design, measurement. Raleigh, NC: SciTech Publishing Inc.

    Google Scholar 

  24. IEEE. (2008). IEEE standard test procedures for antennas. ANSI/IEEE Std, 149–1979, doi:10.1109/IEEESTD.1979.120310.

Download references

Acknowledgments

The authors would like to thank Universiti Kebangsaan Malaysia (UKM) and Ministry of Science Technology and Innovation (MOSTI) of Malaysia for sponsoring this work through Science Fund 01-01-02-SF1071.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. R. Ahsan or M. T. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, M.R., Islam, M.T., Ullah, M.H. et al. Dual band printed patch antenna on ceramic–polytetrafluoroethylene composite material substrate for GPS and WLAN applications. Telecommun Syst 62, 747–756 (2016). https://doi.org/10.1007/s11235-015-0109-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0109-3

Keywords

Navigation