[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

DISAGREE: disagreement-based querying in wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Traditional data acquisition methods for wireless sensor networks (WSNs) require all sensor nodes to transmit at least once to the sink node to obtain a full view of the network. In this paper we present Disagree, a different data acquisition method to retrieve data in WSNs that works in the opposite way as compared with traditional methods. In Disagree, only nodes that do not satisfy an assertion are required to transmit data back to the sink node in order to obtain a complete view of the network. We show that this behavior is the base of an energy-efficient way to gather all data. An important feature of Disagree is that it saves energy at the sensor level by exploiting data correlation. Rather than requesting explicit data readings from all sensor nodes, Disagree estimates the readings from sensor nodes that did not respond to the assertion. As a result of this policy, Disagree can obtain a view of the sensing field with different levels of resolution involving the transmission of only a subset of the sensor nodes by exploiting spatial data redundancy. We implemented Disagree in NS-2 network simulator and results indicate Disagree can significantly reduce the percentage of nodes replying to queries compared with flat and a cluster head based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.

    Article  Google Scholar 

  2. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  3. Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: a survey. IEEE Wireless Communications, 11(6), 6–28.

    Article  Google Scholar 

  4. Barenco, C., Gonzalez, R., Cardenas, N., & Garcia, L. J. (2008). A proposal of a wireless sensor network routing protocol. Telecommunication Systems, 38(1), 61–68.

    Article  Google Scholar 

  5. Boyinbode, O., Le, H., Mbogho, A., Takizawa, M., & Poliah, R. (2010). A survey on clustering algorithms for wireless sensor networks. In Proceedings of 13th international conference on network-based information systems, Takayama, Japan (pp. 358–364).

    Google Scholar 

  6. Braginsky, D., & Estrin, D. (2002). Rumor routing algorithm for sensor networks. In Proceedings of the 1st ACM international workshop on wireless sensor networks and applications, Shenzhen, China (pp. 22–31).

    Chapter  Google Scholar 

  7. Chandrakasan, A., Smith, A., & Heinzelman, W. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  8. Chen, J., Guan, Y., & Pooch, U. (2005). A spatial-based multi-resolution data dissemination scheme for wireless sensor networks. In Proceedings of the 19th IEEE international parallel and distributed proccesing symposium, Denver, USA (pp. 245–253).

    Chapter  Google Scholar 

  9. Chu, D., Deshpande, A., Hellerstein, J., & Hong, W. (2006). Approximate data collection in sensor networks using probabilistic models. In Proceedings of the 22nd international conference on data engineering, Atlanta, USA (pp. 48).

    Google Scholar 

  10. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms. McGrawHill: MIT Press.

    Google Scholar 

  11. Dai, F., & Wu, J. (2006). On constructing k-connected k-dominating set in wireless ad hoc and sensor networks. Journal of Parallel and Distributed Computing, 66(7), 947–958.

    Article  Google Scholar 

  12. Du, D. Z., & Pardalo, P. (2005). Connected dominating set in sensor networks and MANETs. In Handbook of combinatorial optimization (pp. 329–370). Berlin: Springer.

    Chapter  Google Scholar 

  13. Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wireless Communications, 14(2), 70–87.

    Article  Google Scholar 

  14. Ganesan, D., Estrin, D., & Heidemann, J. (2003). DIMENSIONS: why do we need a new data handling architecture for sensor networks? ACM SIGCOMM Computer Communications, 33(1), 143–148.

    Article  Google Scholar 

  15. Guan, X., Guan, L., Wang, X., & Ohtsuki, T. (2010). A new load balancing and data collection algorithm for energy saving in wireless sensor networks. Telecommunication Systems, 45(4), 313–322.

    Article  Google Scholar 

  16. Gupta, H., Navda, V., Das, S., & Chowdhary, V. (2008). Efficient gathering of correlated data in sensor networks. ACM Transactions on Sensor Networks, 4(1), 1–31.

    Article  Google Scholar 

  17. Haas, Z. J., Halpern, J. Y., & Li, L. (2006). Gossip-based ad hoc routing. IEEE/ACM Transactions on Networking, 14(3), 479–491.

    Article  Google Scholar 

  18. Iima, Y., Kanzaki, A., Hara, T., & Nishio, S. (2009). Overhearing based data transmission reduction for periodical data gathering in wireless sensor networks. In Proceedings of the international conference on complex, intelligent and software Intensive systems, Fukuoka, Japan (pp. 1048–1053).

    Google Scholar 

  19. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking, 11(1), 2–16.

    Article  Google Scholar 

  20. Israr, N., & Awan, I. (2008). Coverage based inter cluster communication for load balancing in heterogeneous wireless sensor networks. Telecommunication Systems, 38(3), 121–132.

    Article  Google Scholar 

  21. Jin, Y., Chen, F., Che, G., & Hu, W. (2010). Energy-efficient data collection protocol for wireless sensor network based on tree. In Proceedings of the Asia-Pacific conference on wearable computing systems, Shenzhen, China (pp. 82–85).

    Google Scholar 

  22. Kondo, S., Kanzaki, A., Hara, T., & Nishio, S. (2011). Energy-efficient data gathering using sleep scheduling and spatial correlation based on data distribution in wireless sensor networks. In Proceedings of the 14th international conference on network-based information systems, Tirana, Albania (pp. 194–201).

    Google Scholar 

  23. Kour, H., & Sharma, A. K. (2010). Hybrid energy efficient distributed protocol for heterogeneous wireless sensor network. International Journal of Computer Applications, 4(5), 37–41.

    Google Scholar 

  24. Lee, K., Lee, J., Lee, H., & Shin, Y. (2010). A density and distance based cluster head selection algorithm in sensor networks. In Proceedings of the 12th international conference on advanced communication technology, Phoenix, USA (pp. 162–165).

    Google Scholar 

  25. Lee, S., Lee, C., Cho, Y., & Kim, S. (2004). A new data aggregation algorithm for clustering distributed nodes in sensor networks. Lecture Notes in Computer Science, 3262, 508–520.

    Article  Google Scholar 

  26. Madden, S., Franklin, M., Hellerstein, J., & Hong, W. (2002). TAG: a tiny aggregation service for ad-hoc sensor networks. In Proceedings of the 5th symposium on operating systems design and implementation, Boston, USA (pp. 131–146).

    Chapter  Google Scholar 

  27. Madden, S., Franklin, M., Hellerstein, J., & Hong, W. (2005). TinyDB: an acquisitional query processing system for sensor networks. ACM Transactions on Database Systems, 30(1), 122–173.

    Article  Google Scholar 

  28. Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: a protocol for enhanced efficiency in wireless sensor networks. In Proceedings of the 15th international parallel and distributed processing symposium, San Francisco, USA (pp. 2009–2015).

    Google Scholar 

  29. Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: a hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In Proceedings of the 16th international parallel and distributed processing symposium, Florida, USA (pp. 195–202).

    Chapter  Google Scholar 

  30. Ni, S., Tseng, Y., Chen, Y., & Sheu, J. P. (1999). The broadcast storm problem in a mobile ad-hoc network. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking, Seattle, USA (pp. 151–162).

    Chapter  Google Scholar 

  31. Petrovic, D., Shah, R., Ramchandran, K., & Rabaey, J. (2003). Data funneling: routing with aggregation and compression for wireless sensor networks. In Proceedings of the 1st IEEE international workshop on sensor network protocols and applications, Anchorage, USA (pp. 156–162).

    Google Scholar 

  32. Rajagopalan, R., & Varshney, P. K. (2006). Data aggregation techniques in sensor networks: a survey. IEEE Communications Surveys and Tutorials, 8(4), 48–63.

    Article  Google Scholar 

  33. Roxin, A., Gaber, J., Wack, M., & Nait-Sidi-Moh, A. (2007). Survey of wireless geolocation techniques. In Proceedings of the global communications conference, Washington, USA (pp. 1–9).

    Google Scholar 

  34. Vuran, M. C., Akan, C. B., & Akyildiz, I. F. (2004). Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks: The International Journal of Computer and Telecommunications Networking, 45(3), 245–259.

    Article  Google Scholar 

  35. Vuran, M. C., & Akyildiz, I. F. (2006). Spatio correlation-based collaborative medium access control in wireless sensor networks. IEEE Transactions on Networking, 14(2), 316–329.

    Article  Google Scholar 

  36. Wang, Y., Hsieh, Y., & Tseng, Y. (2009). Multiresolution spatial and temporal coding in a wireless sensor networks for long-term monitoring applications. IEEE Transactions on Computers, 58(6), 827–838.

    Article  Google Scholar 

  37. Yao, Y., & Gehrke, J. (2002). The cougar approach to in-network query processing in sensor networks. ACM SIGMOD Record, 31(3), 9–18.

    Article  Google Scholar 

  38. Yoon, S., & Shahabi, C. (2007). The clustered aggregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Transactions on Sensor Networks, 3(1), 1–39.

    Article  Google Scholar 

  39. Younis, O., & Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by research funds from UNAM/PAPIIT Grants’ IN106609, IN114813 and CONACYT Grants 105117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Montes-de-Oca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes-de-Oca, M., Gomez, J. & Lopez-Guerrero, M. DISAGREE: disagreement-based querying in wireless sensor networks. Telecommun Syst 56, 399–416 (2014). https://doi.org/10.1007/s11235-013-9852-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9852-5

Keywords

Navigation