Abstract
The majority of model-based clustering techniques is based on multivariate normal models and their variants. In this paper copulas are used for the construction of flexible families of models for clustering applications. The use of copulas in model-based clustering offers two direct advantages over current methods: (i) the appropriate choice of copulas provides the ability to obtain a range of exotic shapes for the clusters, and (ii) the explicit choice of marginal distributions for the clusters allows the modelling of multivariate data of various modes (either discrete or continuous) in a natural way. This paper introduces and studies the framework of copula-based finite mixture models for clustering applications. Estimation in the general case can be performed using standard EM, and, depending on the mode of the data, more efficient procedures are provided that can fully exploit the copula structure. The closure properties of the mixture models under marginalization are discussed, and for continuous, real-valued data parametric rotations in the sample space are introduced, with a parallel discussion on parameter identifiability depending on the choice of copulas for the components. The exposition of the methodology is accompanied and motivated by the analysis of real and artificial data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alfo, M., Maruotti, A., Trovato, G.: A finite mixture model for multivariate counts under endogenous selectivity. Stat. Comput. 21(2), 185–202 (2011)
Andrews, J.L., McNicholas, P.D.: Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis. J. Stat. Plan. Inference 141, 1479–1486 (2011)
Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803–821 (1993)
Bedford, T., Cooke, R.M.: Vines—a new graphical model for dependent random variables. Ann. Stat. 30, 1031–1068 (2002)
Brechmann, E.C., Schepsmeier, U.: Modeling dependence with c- and d-vine copulas: The r package cdvine. J. Stat. Softw. 52(3), 1–27 (2013)
Browne, R., McNicholas, P.: Model-based clustering, classification, and discriminant analysis of data with mixed type. J. Stat. Plan. Inference 142(11), 2976–2984 (2012)
Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recogn. 28, 781–793 (1995)
Dean, N., Nugent, R.: Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas. Adv. Data Anal. Classif. 7(3), 339–357 (2013)
Di Lascio, F.M.L., Giannerini, S.: A copula-based algorithm for discovering patterns of dependent observations. J. Classif. 29, 50–75 (2012)
Fang, H.-B., Fang, K.-T., Kotz, S.: The meta-elliptical distributions with given marginals. J. Multivar. Anal. 82(1), 1–16 (2002). [Corr.: Journal of Multivariate Analysis 94, 222–223 (2005)]
Forbes, F., Wraith, D.: A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering. Stat. Comput. 24(6), 971–984 (2014)
Fraley, C., Raftery, A.E., Murphy, T.B., Scrucca, L.: mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation. Technical Report 597, Department of Statistics, University of Washington, Seattle (2012)
Frühwirth-Schnatter, S., Pyne, S.: Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics 11(2), 317–336 (2010)
Genest, C., Nešlehová, J.: A primer on copulas for count data. ASTIN Bull. 37(2), 475–515 (2007)
Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Hothorn, T.: mvtnorm: Multivariate normal and t distributions. R package version 0.9-9996. http://cran.r-project.org/package=mvtnorm (2013)
Hanson, A.J.: Rotations for \(n\)-dimensional graphics. In Paeth, A. W. (Ed.), Graphics Gems V, Number II.4 in The Graphics Gems, Chapter II, pp. 55–64. Academic Press, San Diego (1995)
Hennig, C.: Methods for merging Gaussian mixture components. Adv. Data Anal. Classif. 4(1), 3–34 (2010)
Henningsen, A., Toomet, O.: maxlik: A package for maximum likelihood estimation in R. Comput. Stat. 26(3), 443–458 (2011)
Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: copula: Multivariate Dependence with Copulas. R package version 0.999-13 (2015)
Hofert, M., Mächler, M., McNeil, A.J.: Likelihood inference for Archimedean copulas in high dimensions under known margins. J. Multivar. Anal. 110, 133–150 (2012)
Jajuga, K., Papla, D.: Copula functions in model based clustering. From Data and Information Analysis to Knowledge Engineering Studies in Classification, Data Analysis, and Knowledge Organization, vol. 15, pp. 606–613. Springer, Berlin (2006)
Joe, H.: Approximations to multivariate normal rectangle probabilities based on conditional expectations. J. Am. Stat. Assoc. 90(431), 957–964 (1995)
Joe, H.: Multivariate Models Depend Concepts. Chapman & Hall Ltd, London (1997)
Johnson, N., Kotz, S., Balakrishnan, N.: Multivariate Discrete Distributions. Wiley, New York (1997)
Jorgensen, M.: Using multinomial mixture models to cluster internet traffic. Aust. N. Z. J. Stat. 46(2), 205–218 (2004)
Karlis, D., Meligkotsidou, L.: Finite multivariate Poisson mixtures with applications. J. Stat. Plan. Inference 137, 1942–1960 (2007)
Karlis, D., Santourian, A.: Model-based clustering with non-elliptically contoured distributions. Stat. Comput. 19(1), 73–83 (2009)
Lee, S., McLachlan, G.: Finite mixtures of multivariate skew t-distributions: some recent and new results. Stat. Comput. 24, 181–202 (2014)
Lin, T.-I., Ho, H., Lee, C.-R.: Flexible mixture modelling using the multivariate skew-t-normal distribution. Stat. Comput. 24(4), 531–546 (2014)
Marbac, M., Biernacki, C., Vandewalle, V.: Model-based clustering of Gaussian copulas for mixed data. ArXiv e-prints (2014). arXiv:1405.1299
McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
McNicholas, P.D., Murphy, T.B.: Parsimonious Gaussian mixture models. Stat. Comput. 18(3), 285–296 (2008)
Meng, X.-L., Rubin, D.B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267–278 (1993)
Morris, K., McNicholas, P.: Dimension reduction for model-based clustering via mixtures of shifted asymmetric Laplace distributions. Stat. Probab. Lett. 83(9), 2088–2093 (2013)
Nelsen, R.: An introduction to copulas, Springer series in statistics, 2nd ed. Springer, Berlin (2006)
Panagiotelis, A., Czado, C., Joe, M.: Pair copula constructions for multivariate discrete data. J. Am. Stat. Assoc. 107(499), 1063–1072 (2012)
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2015)
Robitzsch, A., Kiefer, T., George, A.C., Uenlue, A.: CDM: cognitive diagnosis modeling. R package version 2.6-13. http://cran.r-project.org/package=CDM (2014)
Vrac, M., Billard, L., Diday, E., Chèdin, A.: Copula analysis of mixture models. Comput. Stat. 27, 427–457 (2012)
Zimmer, D., Trivedi, P.: Using trivariate copulas to model sample selection and treatment effects: application to family health care demand. J. Bus. Econ. Stat. 24(1), 63–72 (2006)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
11222_2015_9590_MOESM1_ESM.pdf
Supplementary material extends Example 4.2 to illustrate that distinct sensible, transformations can lead to different results. R scripts that reproduce the analyses undertaken in this paper are available upon request to the authors.(PDF 96.5KB)
Rights and permissions
About this article
Cite this article
Kosmidis, I., Karlis, D. Model-based clustering using copulas with applications. Stat Comput 26, 1079–1099 (2016). https://doi.org/10.1007/s11222-015-9590-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-015-9590-5