[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Model-based clustering using copulas with applications

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

The majority of model-based clustering techniques is based on multivariate normal models and their variants. In this paper copulas are used for the construction of flexible families of models for clustering applications. The use of copulas in model-based clustering offers two direct advantages over current methods: (i) the appropriate choice of copulas provides the ability to obtain a range of exotic shapes for the clusters, and (ii) the explicit choice of marginal distributions for the clusters allows the modelling of multivariate data of various modes (either discrete or continuous) in a natural way. This paper introduces and studies the framework of copula-based finite mixture models for clustering applications. Estimation in the general case can be performed using standard EM, and, depending on the mode of the data, more efficient procedures are provided that can fully exploit the copula structure. The closure properties of the mixture models under marginalization are discussed, and for continuous, real-valued data parametric rotations in the sample space are introduced, with a parallel discussion on parameter identifiability depending on the choice of copulas for the components. The exposition of the methodology is accompanied and motivated by the analysis of real and artificial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alfo, M., Maruotti, A., Trovato, G.: A finite mixture model for multivariate counts under endogenous selectivity. Stat. Comput. 21(2), 185–202 (2011)

    Article  MathSciNet  Google Scholar 

  • Andrews, J.L., McNicholas, P.D.: Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis. J. Stat. Plan. Inference 141, 1479–1486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803–821 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford, T., Cooke, R.M.: Vines—a new graphical model for dependent random variables. Ann. Stat. 30, 1031–1068 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Brechmann, E.C., Schepsmeier, U.: Modeling dependence with c- and d-vine copulas: The r package cdvine. J. Stat. Softw. 52(3), 1–27 (2013)

  • Browne, R., McNicholas, P.: Model-based clustering, classification, and discriminant analysis of data with mixed type. J. Stat. Plan. Inference 142(11), 2976–2984 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recogn. 28, 781–793 (1995)

    Article  Google Scholar 

  • Dean, N., Nugent, R.: Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas. Adv. Data Anal. Classif. 7(3), 339–357 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Di Lascio, F.M.L., Giannerini, S.: A copula-based algorithm for discovering patterns of dependent observations. J. Classif. 29, 50–75 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, H.-B., Fang, K.-T., Kotz, S.: The meta-elliptical distributions with given marginals. J. Multivar. Anal. 82(1), 1–16 (2002). [Corr.: Journal of Multivariate Analysis 94, 222–223 (2005)]

    Article  MathSciNet  MATH  Google Scholar 

  • Forbes, F., Wraith, D.: A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering. Stat. Comput. 24(6), 971–984 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Fraley, C., Raftery, A.E., Murphy, T.B., Scrucca, L.: mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation. Technical Report 597, Department of Statistics, University of Washington, Seattle (2012)

  • Frühwirth-Schnatter, S., Pyne, S.: Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics 11(2), 317–336 (2010)

    Article  Google Scholar 

  • Genest, C., Nešlehová, J.: A primer on copulas for count data. ASTIN Bull. 37(2), 475–515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Hothorn, T.: mvtnorm: Multivariate normal and t distributions. R package version 0.9-9996. http://cran.r-project.org/package=mvtnorm (2013)

  • Hanson, A.J.: Rotations for \(n\)-dimensional graphics. In Paeth, A. W. (Ed.), Graphics Gems V, Number II.4 in The Graphics Gems, Chapter II, pp. 55–64. Academic Press, San Diego (1995)

  • Hennig, C.: Methods for merging Gaussian mixture components. Adv. Data Anal. Classif. 4(1), 3–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Henningsen, A., Toomet, O.: maxlik: A package for maximum likelihood estimation in R. Comput. Stat. 26(3), 443–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: copula: Multivariate Dependence with Copulas. R package version 0.999-13 (2015)

  • Hofert, M., Mächler, M., McNeil, A.J.: Likelihood inference for Archimedean copulas in high dimensions under known margins. J. Multivar. Anal. 110, 133–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Jajuga, K., Papla, D.: Copula functions in model based clustering. From Data and Information Analysis to Knowledge Engineering Studies in Classification, Data Analysis, and Knowledge Organization, vol. 15, pp. 606–613. Springer, Berlin (2006)

    Chapter  Google Scholar 

  • Joe, H.: Approximations to multivariate normal rectangle probabilities based on conditional expectations. J. Am. Stat. Assoc. 90(431), 957–964 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Joe, H.: Multivariate Models Depend Concepts. Chapman & Hall Ltd, London (1997)

    Book  MATH  Google Scholar 

  • Johnson, N., Kotz, S., Balakrishnan, N.: Multivariate Discrete Distributions. Wiley, New York (1997)

    MATH  Google Scholar 

  • Jorgensen, M.: Using multinomial mixture models to cluster internet traffic. Aust. N. Z. J. Stat. 46(2), 205–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Karlis, D., Meligkotsidou, L.: Finite multivariate Poisson mixtures with applications. J. Stat. Plan. Inference 137, 1942–1960 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Karlis, D., Santourian, A.: Model-based clustering with non-elliptically contoured distributions. Stat. Comput. 19(1), 73–83 (2009)

    Article  MathSciNet  Google Scholar 

  • Lee, S., McLachlan, G.: Finite mixtures of multivariate skew t-distributions: some recent and new results. Stat. Comput. 24, 181–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, T.-I., Ho, H., Lee, C.-R.: Flexible mixture modelling using the multivariate skew-t-normal distribution. Stat. Comput. 24(4), 531–546 (2014)

  • Marbac, M., Biernacki, C., Vandewalle, V.: Model-based clustering of Gaussian copulas for mixed data. ArXiv e-prints (2014). arXiv:1405.1299

  • McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  • McNicholas, P.D., Murphy, T.B.: Parsimonious Gaussian mixture models. Stat. Comput. 18(3), 285–296 (2008)

    Article  MathSciNet  Google Scholar 

  • Meng, X.-L., Rubin, D.B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267–278 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Morris, K., McNicholas, P.: Dimension reduction for model-based clustering via mixtures of shifted asymmetric Laplace distributions. Stat. Probab. Lett. 83(9), 2088–2093 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Nelsen, R.: An introduction to copulas, Springer series in statistics, 2nd ed. Springer, Berlin (2006)

  • Panagiotelis, A., Czado, C., Joe, M.: Pair copula constructions for multivariate discrete data. J. Am. Stat. Assoc. 107(499), 1063–1072 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2015)

  • Robitzsch, A., Kiefer, T., George, A.C., Uenlue, A.: CDM: cognitive diagnosis modeling. R package version 2.6-13. http://cran.r-project.org/package=CDM (2014)

  • Vrac, M., Billard, L., Diday, E., Chèdin, A.: Copula analysis of mixture models. Comput. Stat. 27, 427–457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmer, D., Trivedi, P.: Using trivariate copulas to model sample selection and treatment effects: application to family health care demand. J. Bus. Econ. Stat. 24(1), 63–72 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Karlis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11222_2015_9590_MOESM1_ESM.pdf

Supplementary material extends Example 4.2 to illustrate that distinct sensible, transformations can lead to different results. R scripts that reproduce the analyses undertaken in this paper are available upon request to the authors.(PDF 96.5KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmidis, I., Karlis, D. Model-based clustering using copulas with applications. Stat Comput 26, 1079–1099 (2016). https://doi.org/10.1007/s11222-015-9590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-015-9590-5

Keywords

Navigation