Abstract
In the context of structural reliability, a small probability to be assessed, a high computational time model and a relatively large input dimension are typical constraints which brought together lead to an interesting challenge. Indeed, in this framework many existing stochastic methods fail in estimating the failure probability with robustness.
Therefore, the aim of this article is to present and prove theoretical results about the validity of an original method we have introduced to overcome the specific constraints mentioned above. This new method turns out to be competitive compared with the existing techniques. It is a variant of accelerated Monte Carlo simulation method, named ADS-2—Adaptive Directional Stratification. It combines, in a two steps adaptive strategy, the stratification into quadrants and the directional simulation techniques. Two ADS-2 estimators are presented and their properties are studied.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Au, S., Beck, J.: Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16, 263–277 (2001)
Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25, 183–197 (2010)
Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230, 2345–2367 (2011)
Bungartz, H., Dirnstorfer, S.: Multivariate quadrature on adaptive sparse grids. Computing 71, 89–114 (1985)
Cannamela, C.: Apport des méthodes probabilistes dans la simulation du comportement sous irradiation du combustible à particules. Ph.D. thesis, University of Paris VII (2007)
Chan, J., Kroese, A.: Rare-event probability estimation with conditional Monte Carlo. Ann. Oper. Res. 189, 43–61 (2011)
Cochran, W.: Sampling Techniques, 3rd edn. Wiley, New York (1977)
Crestaux, T., Le Maître, O., Martinez, J.M.: Plynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94, 1161–1172 (2009)
Dean, T., Dupuis, P.: Splitting for rare event simulation: a large deviations approach to design and analysis. Stoch. Process. Appl. 119(2), 562–587 (2009)
Del Moral, P., Garnier, J.: Genealogical particle analysis of rare events. Ann. Appl. Probab. 15(4), 2496–2534 (2005)
Fang, K.T., Li, R., Sudjianto, A.: Design and modeling for computer experiments. Chapman & Hall/CRC, London (2006)
Fang, K.T., Kotz, S., Ng, K.: Symmetric multivariate and related distributions. In: Cox, D.R., Hinkley, D.V., Rubin, D., Silverman, B.W. (eds.) Monographs on Statistics and Applied Probability. Chapman and Hall, London/New York (1990)
Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)
Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)
Gille-Genest, A.: Utilisation des méthodes numériques probabilistes dans les applications au domaine de fiabilite des structures. Ph.D. thesis, University of Paris VI (1999)
Helton, J.: Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliab. Eng. Syst. Saf. 42(2–3), 327–347 (1993)
Helton, J., Davis, F., Johnson, J.: A comparison of uncertainty and sensitivity analysis results obtained with random and latin hypercube sampling. Reliab. Eng. Syst. Saf. 89(3), 305–330 (2005)
Homem-de-Mello, T., Rubinstein, R.: Estimation of rare event probabilities using cross-entropy. In: Proceedings of the 2002 Winter Simulation Conference (2002)
Lagnoux-Renaudie, A.: A two-step branching splitting model under cost constraint for rare event analysis. J. Appl. Probab. 46, 429–452 (2009)
Lapeyre, B., Pardoux, E., Sentis, R.: Introduction aux Méthodes de Monte Carlo. Springer, Berlin (1997)
L’Ecuyer, P., Demers, V., Tuffin, B.: Splitting for rare-event simulation. In: Proceedings of the 2006 Winter Simulation Conference (2006)
L’Ecuyer, P., Demers, V., Tuffin, B.: Rare events, splitting, and quasi-Monte Carlo. ACM Trans. Model. Comput. Simul. 17(2) (2007)
Li, G., Wang, S.W., Georgopoulos, P., Schoendorf, J., Rabitz, H.: Random sampling-high dimensional model representation (rs-hdmr) and orthogonality of its different order component functions. J. Phys. Chem. 110(7), 2474–2485 (2006)
Liu, P., Kiureghian, A.D.: Structural reliability under incomplete probability information 112, 85–104 (1986)
Madsen, H., Ditlevsen, O.: Strutural Reliability Methods. Wiley, New York (1996)
Madsen, H., Krenk, S., Lind, N.: Methods of Structural Safety (2000). Odile Jacob
Munoz Zuniga, M.: Méthodes stochastiques pour l’estimation contrôlée de faibles probabilités sur des modèles physiques complexes. application au domaine nucléaire. Ph.D. thesis, University of Paris VII (2011)
Munoz Zuniga, M., Garnier, J., Lefebvre, Y.: Controlled estimation of the probability of rare event for a complex physical model—examination of monotoneous variation models (2008)
Munoz Zuniga, M., Garnier, J., Remy, E., de Rocquigny, E.: Adaptative Directional Stratification: an adaptive directional simulation method in a stratified space (2010)
Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Ripley, B.: Stochastic Simulation. Wiley Series in Probability and Statistics. Wiley, New York (1987)
Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo Method, 2nd edn. Wiley, New York (2007)
Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Experiments. Springer, Berlin (1999)
Siegmund, D.: Importance sampling in the Monte Carlo study of sequential tests. Anal. Stat. 4, 673–684 (1976)
Soize, C., Ghanem, R.: Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (2004)
Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)
Todor, R., Schwab, C.: Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27, 232–261 (2007)
Zhang, P.: Nonparametric importance sampling. J. Am. Stat. Assoc. 91(435), 1245–1253 (1996)
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Munoz Zuniga, M., Garnier, J., Remy, E. et al. Analysis of adaptive directional stratification for the controlled estimation of rare event probabilities. Stat Comput 22, 809–821 (2012). https://doi.org/10.1007/s11222-011-9277-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11222-011-9277-5