[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Neural plasticity and concepts ontogeny

  • S.I. : Neuroscience and Its Philosophy
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Neural plasticity has been invoked as a powerful argument against nativism. However, there is a line of argument, which is well exemplified by Pinker (The blank slate: the modern denial of human nature, Penguin, New York, 2002) and more recently by Laurence and Margolis (in: Laurence and Margolis (eds) The conceptual mind: new directions in the study of concepts, MIT, Cambridge, 2015) with respect to concept nativism, according to which even extreme cases of plasticity show important innate constraints, so that one should rather speak of “constrained plasticity”. According to this view, cortical areas are not really equipotential, they perform instead different kinds of computation, follow essentially different learning rules, or have a fixed internal structure acting as a filter for specific categories of inputs. We intend to analyze this argument, in the light of a review of current neuroscientific literature on plasticity. Our conclusion is that Laurence and Margolis are right in their appeal to innate constraints on connectivity—a thesis that is nowadays welcome to both nativists (Mahon and Caramazza in Trends Cogn Sci 15:97–103, 2011) and non-nativists (Pulvermüller et al. in Biol Cybern 108:573–593, 2014)—but there is little support for their claim of further innate differentiation between and within cortical areas. As we will show, there is instead strong evidence that the cortex is characterized by the indefinite repetition of substantially identical computational units, giving rise in any of its portions to Hebbian, input-dependent plasticity. Although this is entirely compatible with the existence of innate constraints on the brain’s connectivity, the cerebral cortex architecture based on a multiplicity of maps correlating with one another has important computational consequences, a point that has been underestimated by traditional connectionist approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a better idea of the scale level of brain areas reported as similar between mutant and control mice, in Fig. 3a, b of the study of Verhage et al. the marked areas are: the cortex (as a whole), the cerebellar anlage, the tectum, the lateral and medial ganglionic eminence, and the brainstem. A scale far larger than that relevant in the concept nativism discussion.

References

  • Ackman, J. B., & Crair, M. C. (2014). Role of emergent neural activity in visual map development. Current Opinion in Neurobiology, 24, 166–175.

    Article  Google Scholar 

  • Ahmed, B., Cordery, P. M., McLelland, D., Bair, W., & Krug, K. (2011). Long-range clustered connections within extrastriate visual area V5/MT of the rhesus macaque. Cerebral Cortex, 22, 60–73.

    Article  Google Scholar 

  • Alfano, C., & Studer, M. (2013). Neocortical arealization: Evolution, mechanisms, and open questions. Developmental Neurobiology, 73, 411–447.

    Article  Google Scholar 

  • Almeida, J., He, D., Chen, Q., Mahon, B. Z., Zhang, F., Gonçlves, O., et al. (2015). Decoding visual location from neural patterns in the auditory cortex of the congenitally deaf. Psychological Science, 26, 1771–1782.

    Article  Google Scholar 

  • Aronoff, R., Matyas, F., Mateo, C., Ciron, C., Schneider, B., & Petersen, C. C. (2010). Long-range connectivity of mouse primary somatosensory barrel cortex. European Journal of Neuroscience, 31, 2221–233.

    Article  Google Scholar 

  • Artola, A., & Singer, W. (1987). Long term potentiation and NMDA receptors in rat visual cortex. Nature, 330, 649–652.

    Article  Google Scholar 

  • Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal of General Psychology, 37, 125–128.

    Article  Google Scholar 

  • Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269–289.

    Article  Google Scholar 

  • Bear, M., & Kirkwood, A. (1993). Neocortical long term potentiation. Current Opinion in Neurobiology, 3, 197–202.

    Article  Google Scholar 

  • Bednar, J. A., & Miikkulainen, R. (2006). Joint maps for orientation, eye, and direction preference in a self-organizing model of v1. Neurocomputing, 69, 1272–1276.

    Article  Google Scholar 

  • Bedny, M., Konkle, T., Pelphrey, K., Saxe, R., & Pascual-Leone, A. (2010). Sensitive period for a multimodal response in human visual motion area MT/MST. Current Biology, 20, 1900–1906.

    Article  Google Scholar 

  • Bedny, M., Pascual-Leone, A., Dravida, S., & Saxe, R. (2012). A sensitive period for language in the visual cortex: Distinct patterns of plasticity in congenitally versus late blind adults. Brain and Language, 122, 162–170.

    Article  Google Scholar 

  • Ben-Ari, Y. (2002). Excitatory actions of gaba during development: The nature of the nurture. Nature Reviews Neuroscience, 3, 728–739.

    Article  Google Scholar 

  • Ben-Ari, Y., Gaiarsa, J. L., Tyzio, R., & Khazipov, R. (2007). GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiological Reviews, 87, 1215–1284.

    Article  Google Scholar 

  • Berlin, R. (1858). Beitrag zur structurlehre der grosshirnwindungen. Ph.D. Thesis, Medicinischen Fakultät zu Erlangen.

  • Berlucchi, G., & Buchtel, H. (2009). Neuronal plasticity: Historical roots and evolution of meaning. Nature Reviews Neuroscience, 192, 307–319.

    Google Scholar 

  • Bermúdez-Rattoni, F. (Ed.). (2007). Neural plasticity and memory: From genes to brain imaging. Boca Raton, FL: CRC Press.

  • Beul, S. F., & Hilgetag, C. C. (2015). Towards a ’canonical’ agranular cortical microcircuit. Frontiers in Neuroanatomy, 8, 165.

    Article  Google Scholar 

  • Bliss, T., & Collingridge, G. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.

    Article  Google Scholar 

  • Bliss, T., & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.

    Article  Google Scholar 

  • Blumberg, M. S., Freeman, J. H., & Robinson, S. (Eds.). (2010). Oxford handbook of developmental behavioral neuroscience. Oxford: Oxford University Press.

  • Bontempi, B., Silva, A., & Christen, Y. (Eds.). (2007). Memories: Molecules and circuits. Berlin: Springer.

  • Born, R., Trott, A. R., & Hartmann, T. S. (2015). Cortical magnification plus cortical plasticity equals vision? Vision Research, 111, 161–169.

    Article  Google Scholar 

  • Bosman, C. A., & Aboitiz, F. (2015). Functional constraints in the evolution of brain circuits. Frontiers in Neuroscience, 9, 303.

    Article  Google Scholar 

  • Bourne, J. A., & Rosa, M. G. (2006). Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: Early maturation of the middle temporal area (MT). Cerebral Cortex, 16, 405–414.

    Article  Google Scholar 

  • Braak, H. (1974). On the structure of the human archicortex. I. The cornu ammonis. A Golgi and pigment architectonic study. Cell Tissue Research, 152, 349–383.

    Article  Google Scholar 

  • Braddick, O., Atkinson, J., & Innocenti, G. M. (Eds.). (2011). The developing brain: From developmental biology to behavioral disorders and their remediation. Cambridge: Cambridge University Press.

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirmrinde. Leipzig: Barth.

    Google Scholar 

  • Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.

    Article  Google Scholar 

  • Burkhalter, A., Bernardo, K. L., & Charles, V. (1993). Development of local circuits in human visual cortex. Journal of Neuroscience, 13, 1916–1931.

    Google Scholar 

  • Burton, H., Sinclair, R. J., & Agato, A. (2012). Recognition memory for Braille or spoken words: An fMRI study in early blind. Brain, 1438, 22–34.

    Article  Google Scholar 

  • Burton, H., Snyder, A. Z., DIamond, J., & Raichle, M. E. (2002). Adaptive changes in early and late blind: A fMRI study of verb generation to heard nouns. Journal of Neurophysiology, 88, 3359–3371.

    Article  Google Scholar 

  • Bush, P. C., & Mainen, Z. F. (2015). Columnar architecture improves noise robustness in a model cortical network. PLoS ONE, 10(3), e0119072.

    Article  Google Scholar 

  • Butz, M., Wörgötter, F., & van Ooyen, A. (2009). Activity-dependent structural plasticity. Brain Research Reviews, 60, 287–305.

    Article  Google Scholar 

  • Cahalane, D. J., Charvet, C. J., & Finlay, B. L. (2012). Systematic, balancing gradients in neuron density and number across the primate isocortex. Frontiers in Nauroanatomy, 6, 28.

    Google Scholar 

  • Carandini, M., & Heeger, D. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51–62.

    Article  Google Scholar 

  • Carlo, C. N., & Stevens, C. F. (2013). Structural uniformity of neocortex, revisited. Proceedings of the Natural Academy of Science of United States of America, 110, 719–725.

    Article  Google Scholar 

  • Caroni, P., Donato, F., & Muller, D. (2012). Structural plasticity upon learning: Regulation and functions. Nature Reviews Neuroscience, 13, 478–490.

    Article  Google Scholar 

  • Charvet, C. J., Cahalane, D. J., & Finlay, B. L. (2015). Systematic, cross-cortex variation in neuron numbers in rodents and primates. Cerebral Cortex, 25(1), 147–160.

    Article  Google Scholar 

  • Cheetham, C. E., Barnes, S. J., Albieri, G., Knott, G. W., & Finnerty, G. T. (2014). Pansynaptic enlargement at adult cortical connections strengthened by experience. Cerebral Cortex, 24, 521–531.

    Article  Google Scholar 

  • Churchland, P. M. (1988). Perceptual plasticity and theoretical neutrality: A reply to Jerry Fodor. Philosophy of Science, 55, 167–187.

    Article  Google Scholar 

  • Cohen-Tannoudji, M., Babinet, C., & Wassef, M. (1994). Early determination of a mouse somatosensory cortex marker. Nature, 368, 460–463.

    Article  Google Scholar 

  • Collignon, O., Dormal, G., & Lepore, F. (2013). Building the brain in the dark: Functional and specific crossmodal reorganization in the occipital cortex of blind individuals. In J. K. Steeves & L. R. Harris (Eds.), Plasticity in sensory systems (pp. 114–137). Cambridge: Cambridge University Press.

    Google Scholar 

  • Colombo, J. (1982). The critical period concept: Research, methodology, and theoretical issues. Psychological Bulletin, 91, 260–275.

    Article  Google Scholar 

  • Cooke, S. F., & Bear, M. F. (2013). How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex. Philosophical Transactions of the Royal Society B, 369, 20130284.

    Article  Google Scholar 

  • Cowie, F. (1999). What’s within? Nativism reconsidered. Oxford: Oxford University Press.

    Google Scholar 

  • Crair, M. C. (1999). Neuronal activity during development: Permissive or instructive? Current Opinion in Neurobiology, 9, 88–93.

    Article  Google Scholar 

  • Crowley, J. C., & Katz, L. C. (2002). Ocular dominance development revisited. Current Opinion in Neurobiology, 12, 104–109.

    Article  Google Scholar 

  • Crozier, R. A., Wang, Y., Liu, C. H., & Bear, M. F. (2007). Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proceedings of the Natural Academy of Science of United States of America, 104, 1383–1388.

    Article  Google Scholar 

  • Curtiss, S. (1977). Genie—A psycholinguistic study of a modern-day wild child. New York: Academic Press.

    Google Scholar 

  • Danelli, L., Cossu, G., Berlingeri, M., Bottini, G., Sberna, M., & Paulesu, E. (2013). Is a lone right hemisphere enough? neurolinguistic architecture in a case with a very early left hemispherectomy. Neurocase, 19, 209–231.

    Article  Google Scholar 

  • Deco, G., & Rolls, E. (2004). A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research, 44, 621–642.

    Article  Google Scholar 

  • Desai, N. S., Cudmore, R. H., Nelson, S. B., & Turrigiano, G. G. (2002). Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience, 5, 783–789.

    Google Scholar 

  • Dougherty, R. F., Koch, V. M., Brewer, A. A., Fischer, B., Modersitzki, J., & Wandell, B. A. (2003). Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Vision, 3, 586–598.

    Article  Google Scholar 

  • Douglas, R. J., Martin, K. A., & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.

    Article  Google Scholar 

  • Eliasmith, C., & Anderson, C. H. (2003). Neural engineering computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT.

    Google Scholar 

  • Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness—A connectionist perspective on development. Cambridge, MA: MIT.

    Google Scholar 

  • Elston, G. N. (2003). Cortex, cognition and the cell: New insights into the pyramidal neuron and prefrontal function. Cerebral Cortex, 13, 1124–1138.

    Article  Google Scholar 

  • Elston, G. N., Benavides-Piccione, R., Elston, A., Manger, P. R., & DeFelipe, J. (2011). Pyramidal cells in prefrontal cortex of primates: Marked differences in neuronal structure among species. Frontiers in Nauroanatomy, 5, 2.

    Google Scholar 

  • Fahle, M., & Poggio, T. (Eds.). (2002). Perceptual learning. Cambridge, MA: MIT.

  • Fallon, J. B., Irvine, D. R. F., & Shepherd, R. K. (2009). Neural prostheses and brain plasticity. Journal of Neural Engineering, 6, 065008.

    Article  Google Scholar 

  • Feldman, D. E. (2000). Timing-based LPT and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56.

    Article  Google Scholar 

  • Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55.

    Article  Google Scholar 

  • Feldman, D. E. (2012). The spike-timing dependence of plasticity. Neuron, 75, 556–571.

    Article  Google Scholar 

  • Ferster, D., & Lindström, S. (1983). An intracellular analysis of geniculocortical connectivity in area 17 of the cat. Journal of Physiology, 342, 181–215.

  • Forest, D. (2014). Neuroconstructivism: A developmental turn in cognitive neuroscience? In C. T. Wolfe (Ed.), Brain theory—Essays in critical neurophilosophy (pp. 68–87). London: Palgrave Macmillan.

    Google Scholar 

  • Fox, K. (2002). Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience, 111, 799–814.

    Article  Google Scholar 

  • Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014(ID541), 870.

    Google Scholar 

  • Fuster, J. M. (2001). The prefrontal cortex—An update: Time is of the essence. Neuron, 30, 319–333.

    Article  Google Scholar 

  • Fuster, J. M. (2008). The prefrontal cortex (4th ed.). New York: Academic Press.

    Google Scholar 

  • Gao, W. J., & Pallas, S. (1999). Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections. Journal of Neuroscience, 19, 7940–7950.

    Google Scholar 

  • Garagnani, M., Wennekers, T., & Pulvermüller, F. (2000). Recruitment and consolidation of cell assemblies for words by way of Hebbian learning and competition in a multi-layer neural network. Cognitive Computation, 1, 160–197.

    Article  Google Scholar 

  • Gilbert, C. D., & Wiesel, T. N. (1983). Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience, 3, 1116–1133.

    Google Scholar 

  • Gilbert, C. D., & Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience, 9, 2432–2442.

    Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the Natural Academy of Science of United States of America, 101, 8174–8179.

    Article  Google Scholar 

  • Gottfried, J. A. (2010). Central mechanisms of odour object perception. Nature Reviews Neuroscience, 11, 628–641.

    Article  Google Scholar 

  • Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539–559.

    Article  Google Scholar 

  • Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14, 357–364.

    Article  Google Scholar 

  • Haeusler, S., Schuch, K., & Maass, W. (2009). Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Journal of Physiology-Paris, 21, 1229–1243.

    Google Scholar 

  • Haken, H. (1978). Synergetics—An introduction, nonequilibrium phase transitions and self-organization in physics, chemistry and biology (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Harris, J., & Rubel, E. (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 216–217, 127–137.

    Article  Google Scholar 

  • Harris, K. D., & Shepherd, G. M. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18, 170–181.

    Article  Google Scholar 

  • Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391–399.

    Article  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

    Google Scholar 

  • Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6, 887–888.

    Article  Google Scholar 

  • Herculano-Houzel, S., Collins, C. E., Wong, P., Kaas, J. H., & Lent, R. (2008). The basic nonuniformity of the cerebral cortex. Proceedings of the Natural Academy of Science of United States of America, 34, 12593–12598.

    Article  Google Scholar 

  • Herculano-Houzel, S., & Lent, R. (2005). Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain. Journal of Neuroscience, 25, 2518–2521.

    Article  Google Scholar 

  • Herculano-Houzel, S., Catania, K., Manger, P. R., & Kaas, J. H. (2015). Mammalian brains are made of these: A dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain, Behavior and Evolution, 86, 145–163.

    Article  Google Scholar 

  • Heyes, C. (2010). Where do mirror neurons come from? Neuroscience & Biobehavioral Reviews, 34, 575–583.

    Article  Google Scholar 

  • Holtmaat, A., & Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience, 10, 647–658.

    Article  Google Scholar 

  • Homae, F., Watanabe, H., Otobe, T., Nakano, T., Go, T., Konishi, Y., et al. (2010). Development of global cortical networks in early infancy. Journal of Neuroscience, 30, 4877–4882.

    Article  Google Scholar 

  • Hou, C., Pettet, M. W., Sampath, V., Candy, T. R., & Norcia, A. M. (2003). Development of the spatial organization and dynamics of lateral interactions in the human visual system. Journal of Neuroscience, 23, 8630–8640.

    Google Scholar 

  • Howard, J. D., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). Odor quality coding and categorization in human posterior piriform cortex. Nature Neuroscience, 12, 932–938.

    Article  Google Scholar 

  • Huang, S., Rozas, C., Trevino, M., Contreras, J., Yang, S., Song, L., et al. (2014). Associative Hebbian synaptic plasticity in primate visual cortex. Journal of Neuroscience, 34, 7575–7579.

    Article  Google Scholar 

  • Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591.

    Article  Google Scholar 

  • Hubel, D., & Wiesel, T. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.

    Google Scholar 

  • Huttenlocher, P. R. (2002). Neural plasticity—The effects of environment on the development of the cerebral cortex. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Innocenti, G. M., & Price, D. (2005). Exuberance in the development of cortical networks. Nature Reviews Neuroscience, 6, 955–965.

    Article  Google Scholar 

  • Ito, M. (1989). Long-term depression. Annual Review of Neuroscience, 12, 85–102.

    Article  Google Scholar 

  • James, W. (1890). The principles of psychology. New York: Holt, Rinehart and Winston.

    Book  Google Scholar 

  • Jones, E. G. (1984). Identication and classication of intrinsic circuit elements in the neocortex. In G. Edelman, W. Gall, & W. Cowan (Eds.), Dynamic Aspects of neocortical function (pp. 7–40). New York: Wiley.

  • Jones, E. G. (1985). The Thalamus. New York: Plenum Press.

  • Kaas, J. H. (1997). Plasticity of sensory and motor maps in adult mammals. Annual Review of Neuroscience, 14, 137–167.

    Article  Google Scholar 

  • Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183, 339–373.

    Article  Google Scholar 

  • Kaplan, D. M., & Craver, C. F. (2011). Towards a mechanistic philosophy of neuroscience. In S. French & J. Saatsi (Eds.), Continuum companion to the philosophy of science (pp. 268–292). London: Continuum Press.

    Google Scholar 

  • Karbowski, J. (2014). Constancy and trade-offs in the neuroanatomical and metabolic design of the cerebral cortex. Frontiers in Neural Circuits, 8, 9.

    Article  Google Scholar 

  • Karlen, S. J., Hunt, D. L., & Krubitzer, L. (2010). Cross-modal plasticity in the mammalian neocortex. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 357–374). Oxford: Oxford University Press.

    Google Scholar 

  • Karlen, S. J., Kahn, D., & Krubitzer, L. (2006). Early blindness results in abnormal corticocortical and thalamo cortical connections. Neuroscience, 142, 843–858.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT.

    Google Scholar 

  • Katz, B. (1971). Quantal mechanism of neural transmitter release. Science, 173, 123–126.

    Article  Google Scholar 

  • Katz, L., & Shatz, C. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.

    Article  Google Scholar 

  • Khazipov, R., & Buzsáki, G. (2010). Early patterns of electrical activity in the developing cortex. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 161–177). Oxford: Oxford University Press.

    Google Scholar 

  • Khazipov, R., & Colonnese, M. (2013). Neonatal cortical rhythms. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain (pp. 131–153). New York: Academic Press.

    Chapter  Google Scholar 

  • Kisvárday, Z. F., Tóth, E., Rausch, M., & Eysel, U. T. (1997). Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cerebral Cortex, 7, 605–618.

    Article  Google Scholar 

  • Ko, H., Mrsic-Flogel, T. D., & Hofer, S. B. (2014). Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience. Journal of Neuroscience, 34, 9812–9816.

    Article  Google Scholar 

  • Kolb, B. (1995). Brain plasticity and behavior. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kolb, B., & Gibb, R. (2014). Searching for the principles of brain plasticity and behavior. Cortex, 58, 251–260.

    Article  Google Scholar 

  • Kovács, I., Kozma, P., Fehér, A., & Benedek, G. (1999). Late maturation of visual spatial integration in humans. Proceedings of the Natural Academy of Science of United States of America, 96, 12204–12209.

    Article  Google Scholar 

  • Krubitzer, L. (1995). The organization of neocortex in mammals: Are species differences really so different? Trends in Neuroscience, 8, 408–417.

    Article  Google Scholar 

  • Krubitzer, L., & Kaas, J. H. (2005). The evolution of the neocortex in mammals: How is phenotypic diversity generated? Current Opinion in Neurobiology, 15, 444–453.

    Article  Google Scholar 

  • Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67, 713–727.

    Article  Google Scholar 

  • Laurence, S., & Margolis, E. (2015). Concept nativism and neuralplasticity. In S. Laurence & E. Margolis (Eds.), Conceptual mind: New directions in the study of concepts. Cambridge, MA: MIT.

    Google Scholar 

  • Levy, W., & Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8, 791–797.

    Article  Google Scholar 

  • Li, W., Luxenberg, E., Parrish, T., & Gottfried, J. A. (2006). Learning to smell the roses: Experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron, 52, 1097–1108.

    Article  Google Scholar 

  • Lledo, P. M., Alonso, M., & Grubb, M. S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature Reviews Neuroscience, 7, 179–193.

    Article  Google Scholar 

  • Lorente de Nó, R. (1938). Architectonics and structure of the cerebral cortex. In J. Fulton (ed.), Physiology of the nervous system (pp. 291–330). Oxford, UK: Oxford University Press.

  • Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136, 659–676.

    Article  Google Scholar 

  • Mahon, B. Z. (2015). Missed connections: A connectivity constrained account of the representation and organization of object concepts. In S. Laurence & E. Margolis (Eds.), The conceptual mind: New directions in the study of concepts. Cambridge, MA: MIT.

    Google Scholar 

  • Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object knowledge in the brain? The distributed domain-specific hypothesis. Trends in Cognitive Sciences, 15, 97–103.

  • Majewska, A. K., & Sur, M. (2006). Plasticity and specicity of cortical processing networks. Trends in Neuroscience, 26, 323–329.

  • Marcus, G. F., Marblestone, A., & Dean, T. (2014). The atoms of neural computation. Science, 346, 551–552.

    Article  Google Scholar 

  • Marik, S. A., Yamahachi, H., McManus, J. N. J., Szabo, G., & Gilbert, C. D. (2010). Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biology, 8, 1–16.

    Article  Google Scholar 

  • Markram, H., Gerstner, W., & Sjöström, P. J. (2011). A history of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 3, 4.

    Article  Google Scholar 

  • Markram, H., Gerstner, W., & Sjöström, P. J. (2012). Spike-timing-dependent plasticity: A comprehensive overview. Frontiers in Synaptic Neuroscience, 4, 2.

    Article  Google Scholar 

  • Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.

    Article  Google Scholar 

  • Marr, D. (1970). A theory for cerebral neocortex. Proceedings of the Royal Society of London B, 176, 161–234.

    Article  Google Scholar 

  • Mason, C. (2009). The development of developmental neuroscience. Journal of Neuroscience, 29(2735–12), 747.

    Google Scholar 

  • Mastronarde, D. N. (1983). Correlated firing of retinal ganglion cells: I. Spontaneously active inputs in X- and Y-cells. Journal of Neuroscience, 14, 409–441.

    Google Scholar 

  • May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 15, 475–482.

    Article  Google Scholar 

  • McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14, 348–356.

    Article  Google Scholar 

  • Meister, M., Wong, R., Daylor, D., & Shatz, C. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939–943.

    Article  Google Scholar 

  • Menary, R. (2014). Neural plasticity, neuronal recycling and niche construction. Minds and Language, 29, 286–303.

    Article  Google Scholar 

  • Miikkulainen, R., Bednar, J., Choe, Y., & Sirosh, J. (2005). Computational maps in the visual cortex. New York: Springer.

    Google Scholar 

  • Miller, K. D. (2016). Canonical computations of cerebral cortex. Current Opinion in Neurobiology, 37, 75–84.

    Article  Google Scholar 

  • Millikan, R. G. (1984). Language, thought, and other biological categories: New foundations for realism. Cambridge, MA: MIT.

    Google Scholar 

  • Mitani, A., Shimokouchi, M., Itoh, K., Nomura, S., Kudo, M., Mizuno, N. (1985). Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. Journal of Comparative Neurology, 235, 430–447

  • Møller, A. R. (Ed.). (2006). Neural plasticity and disorders of the nervous system. Cambridge: Cambridge University Press.

  • Mountcastle, V. (1957). Modality and topographic properties of single neurons in cats somatic sensory cortex. Journal of Neurophysiology, 20, 408–434.

    Google Scholar 

  • Nakamura, H. (2013). Area patterning of the mammalian cortex. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS (pp. 45–60). New York: Academic Press.

    Chapter  Google Scholar 

  • Newport, E., Bavelier, D., & Neville, H. J. (2001). Critical thinking about critical periods: Perspectives on a critical period for language acquisition. In E. Dupoux (Ed.), Language, brain, and cognitive development: Essays in honor of Jacques Mehler (pp. 481–502). Cambridge, MA: MIT.

    Google Scholar 

  • Nieuwenhuys, R. (1994). The neocortex. Anatomy and Embryology, 190, 307–337.

    Article  Google Scholar 

  • Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Berlin: Springer.

    Book  Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (Eds.). (2003). Niche construction: The neglected process in evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Ohl, F. W., Scheich, H., & Freeman, W. J. (2001). Change in pattern of ongoing cortical activity with auditory category learning. Nature, 412, 733–736.

    Article  Google Scholar 

  • O’Leary, D. D., Chou, S. J., & Sahara, S. (2007). Area patterning of the mammalian cortex. Neuron, 56, 252–269.

    Article  Google Scholar 

  • O’Leary, D. D., Stocker, A., & Zembrzycki, A. (2013). Area patterning of the mammalian cortex. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS (pp. 61–85). New York: Academic Press.

    Chapter  Google Scholar 

  • Oppenheim, R. W., Milligan, C., & Sun, W. (2010). Programmed cell death during nervous system development: Mechanisms, regulation, functions, and implications for neurobehavioral ontogeny. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 76–107). Oxford: Oxford University Press.

    Google Scholar 

  • Paillard, J. (1976). Réflexions sur l’usage du concept de plasticité en neurobiology. Journal de Psychologie Normale et Pathologique, 1, 33–47.

    Google Scholar 

  • Paille, V., Fino, E., Du, K., Morera-Herreras, T., Perez, S., Kotaleski, J. H., et al. (2013). GABAergic circuits control spike-timing-dependent plasticity. Journal of Neuroscience, 33, 9353–9363.

    Article  Google Scholar 

  • Palmer, S. (1999). Vision science—Photons to phenomenology. Cambridge, MA: MIT.

    Google Scholar 

  • Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.

    Article  Google Scholar 

  • Perfors, A., Tenenbaum, J. B., & Regier, T. (2011). The learnability of abstract syntactic principles. Cognition, 1418, 306–338.

    Article  Google Scholar 

  • Piccinini, G. (2007). Computational modeling vs. computational explanation: Is everything a Turing Machine, and does it matter to the philosophy of mind? Australasian Journal of Philosoph, 85, 93–115.

    Article  Google Scholar 

  • Pinker, S. (2002). The Blank Slate: The modern denial of human nature. New York: Penguin.

    Google Scholar 

  • Plebe, A. (2007). A model of angle selectivity development in visual area V2. Neurocomputing, 70, 2060–2066.

    Article  Google Scholar 

  • Plebe, A. (2012). A model of the response of visual area V2 to combinations of orientations. Network: Computation in Neural Systems, 23, 105–122.

    Google Scholar 

  • Plebe, A., Mazzone, M., & De La Cruz, V. M. (2010). First words learning: A cortical model. Cognitive Computation, 2, 217–229.

    Article  Google Scholar 

  • Prinz, J. (2002). Furnishing the mind—Concepts and their perceptual basis. Cambridge, MA: MIT.

    Google Scholar 

  • Prinz, J. (2012). Beyond human nature—How culture and experience shape the human mind. New York: Norton & Co.

    Google Scholar 

  • Proulx, M. J. (2010). Synthetic synaesthesia and sensory substitution. Consciousness and Cognition, 19, 501–503.

    Article  Google Scholar 

  • Proulx, M. J., Brown, D. J., Pasqualotto, A., & Meijer, P. (2014). Multisensory perceptual learning and sensory substitution. Neuroscience and Biobehavioral Reviews, 41, 16–25.

    Article  Google Scholar 

  • Pulvermüller, F., Garagnani, M., & Wennekers, T. (2014). Thinking in circuits: Toward neurobiological explanation in cognitive neuroscience. Biological Cybernetics, 108, 573–593.

    Article  Google Scholar 

  • Quartz, S. R. (2003). Toward a developmental evolutionary psychology: Genes, development, and the evolution of the human cognitive architecture. In S. Scher & F. Rauscher (Eds.), Evolutionary psychology—Alternative approaches (pp. 185–210). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Rakic, P. (2008). Confusing cortical columns. Proceedings of the Natural Academy of Science of Unites States of America, 34, 12099–12100.

    Article  Google Scholar 

  • Rakica, P., Ayoub, A. E., Breunig, J. J., & Dominguez, M. H. (2009). Decision by division: Making cortical maps. Trends in Neuroscience, 32, 291–301.

    Article  Google Scholar 

  • Ramón y Cajal, S. (1894). The croonian lecture: La fine structure des centres nerveux. Proceedings of the Royal Society of London, 55, 444–468.

    Article  Google Scholar 

  • Ramón y Cajal, S. (1906). In J. DeFelipe & E. G. Jones (Eds.), Cajal on the cerebral cortex: An annotated translation of the complete writings (p. 1988). Oxford: Oxford University Press.

  • Reali, F., & Christiansen, M. H. (2005). Uncovering the richness of the stimulus: Structure dependence and indirect statistical evidence. Cognitive Science, 29, 1007–1028.

    Article  Google Scholar 

  • Rockel, A., Hiorns, R., & Powell, T. (1980). The basic uniformity in structure of the neocortex. Brain, 103, 221–244.

    Article  Google Scholar 

  • Roe, A. W., Garraghty, P., Esguerra, M., & Sur, M. (1990). A map of visual space induced in primary auditory cortex. Science, 250, 818–820.

    Article  Google Scholar 

  • Roe, A. W., Garraghty, P., & Sur, M. (1987). Retinotectal W cell plasticity: Experimentally induced retinal projections to auditory thalamus in ferrets. Soc Neurosci Abst, 13, 1023.

    Google Scholar 

  • Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2009). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14, 64–71.

    Article  Google Scholar 

  • Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 906–914.

    Google Scholar 

  • Roubertouxs, P. L., Jamon, M., & Carlier, M. (2010). Brain development: Genes, epigenetic events, and maternal environments. In M. S. Blumberg, J. H. Freeman, & S. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 51–75). Oxford: Oxford University Press.

    Google Scholar 

  • Rubenstein, J. L. R., & Rakic, P. (Eds.). (2013a). Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain. New York: Academic Press.

    Google Scholar 

  • Rubenstein, J. L. R., & Rakic, P. (Eds.). (2013b). Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS. New York: Academic Press.

  • Ryder, D. (2004). SINBAD neurosemantics: A theory of mental representation. Minds and Machines, 19, 211–240.

    Google Scholar 

  • Sakurai, Y. (2014). Brain–machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain. Frontiers in Systems Neuroscience, 8, 104.

    Google Scholar 

  • Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60.

    Article  Google Scholar 

  • Schuster, C. M., Davis, G. W., Fetter, R. D., & Goodman, C. S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron, 17, 655–667.

    Article  Google Scholar 

  • Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation modules in auditory cortex. Nature, 404, 841–847.

    Article  Google Scholar 

  • Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 3589–3594.

    Article  Google Scholar 

  • Shepherd, G. M. (1979). The Synaptic Organization of the Brain (2nd ed.). Oxford, UK: Oxford University Press.

  • Shepherd, G. M. (1988). A basic circuit for cortical organization. In M. S. Gazzaniga (Ed.), Perspectives on memory research (pp. 93–134). Cambridge, MA: MIT.

    Google Scholar 

  • Shulz, D., & Feldman, D. (2013). Spike timing-dependent plasticity. In J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain (pp. 155–181). New York: Academic Press.

    Chapter  Google Scholar 

  • Sirois, S., Spratling, M., Thomas, M. S. C., Westermann, G., Mareschal, D., & Johnson, M. H. (2008). Preécis of neuroconstructivism: How the brain constructs cognition. Behavioral and Brain Science, 31, 321–356.

    Article  Google Scholar 

  • Squire, L., & Kandel, E. (1999). Memory: From mind to molecules. New York: Scientific American Library.

    Google Scholar 

  • Srinivasan, S., Carlo, C. N., & Stevens, C. F. (2015). Predicting visual acuity from the structure of visual cortex. Proceedings of the Natural Academy of Science USA, 112, 7815–7820.

    Article  Google Scholar 

  • Steeves, J. K., & Harris, L. R. (Eds.). (2013). Plasticity in sensory systems. Cambridge: Cambridge University Press.

  • Stettler, D. D., Yamahachi, H., Li, W., Denk, W., & Gilbert, C. D. (2006). Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron, 49, 877–887.

    Article  Google Scholar 

  • Stevens, J. L. R., Law, J. S., Antolik, J., & Bednar, J. A. (2013). Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. JNS, 33, 15747–15766.

    Google Scholar 

  • Stiles, J. (2011). Brain development and the nature versus nurture debate. In O. Braddick, J. Atkinson, & G. M. Innocenti (Eds.), The developing brain: From developmental biology to behavioral disorders and their remediation (pp. 3–22). Cambridge: Cambridge University Press.

    Google Scholar 

  • Stiles, J., Reilly, J. S., Levine, S. C., Trauner, D. A., & Nass, R. (2012). Neural plasticity and cognitive development: Insights from children with perinatal brain injury. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Su, C. Y., Menuz, K., & Carlson, J. R. (2009). Olfactory perception: Receptors, cells, and circuits. Cell, 139, 45–59.

    Article  Google Scholar 

  • Sur, M. (1989). Visual plasticity in the auditory pathway: Visual inputs induced into auditory thalamus and cortex illustrate principles of adaptive organization in sensory systems. In Dynamic interactions in neural networks: Models and data (pp. 35–52). Berlin: Springer.

  • Sur, M., & Leamey, C. A. (2001). Development and plasticity of cortical areas and networks. Nature Reviews Neuroscience, 2, 251–262.

    Article  Google Scholar 

  • Sur, M., & Rubenstein, J. L. R. (2005). Patterning and plasticity of the cerebral cortex. Science, 310, 805–810.

    Article  Google Scholar 

  • Swingley, D. (2010). Fast mapping and slow mapping in children’s word learning. Language Learning and Development, 6, 179–183.

    Article  Google Scholar 

  • Trachtenberg, J. T., & Stryker, M. P. (2001). Rapid anatomical plasticity of horizontal connections in the developing visual cortex. Journal of Neuroscience, 21, 3476–3482.

    Google Scholar 

  • Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E., & Bergles, D. E. (2007). The origin of spontaneous activity in the developing auditory system. Nature, 450, 50–56.

    Article  Google Scholar 

  • Turrigiano, G. G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89–103.

    Article  Google Scholar 

  • Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 391, 892–896.

    Google Scholar 

  • Ursino, M., & La Cara, G. E. (2004). Comparison of different models of orientation selectivity based on distinct intracortical inhibition rules. Vision Research, 44, 1641–1658.

    Article  Google Scholar 

  • van Ooyen, A. (2001). Competition in the development of nerve connections: A review of models. Network: Computation in Neural Systems, 12, R1–R47.

    Article  Google Scholar 

  • Verhage, M., Maia, A. S., Plomp, J. J., Brussaard, A. B., Heeroma, J. H., Vermeer, H., et al. (2000). Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science, 287, 864–869.

    Article  Google Scholar 

  • Vogt, C., & Vogt, O. (1919). Allgemeine Ergebnisse unserer Hirnforschung. Journal für Psychologie und Neurologie, 25, 279–461.

    Google Scholar 

  • von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetic, 14, 85–100.

    Article  Google Scholar 

  • von der Malsburg, C. (1995). Network self-organization in the ontogenesis of the mammalian visual system. In S. F. Zornetzer, J. Davis, C. Lau, & T. McKenna (Eds.), An introduction to neural and electronic networks (2nd ed., pp. 447–462). New York: Academic Press.

    Google Scholar 

  • von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Berlin: Springer.

    Google Scholar 

  • von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404, 871–876.

    Article  Google Scholar 

  • Wang, X., Merzenich, M. M., Sameshima, K., & Jenkins, W. M. (1995). Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature, 378, 71–75.

    Article  Google Scholar 

  • Watt, A. J., & Desai, N. S. (2010). Homeostatic plasticity and STDP: Keeping a neuron’s cool in a fluctuating world. Frontiers in Synaptic Neuroscience, 2, 5.

    Article  Google Scholar 

  • Wattam-Bell, J., Birtles, D., Nyström, P., von Hofsten, C., Rosander, K., Anker, S., et al. (2010). Reorganization of global form and motion processing during human visual development. Current Biology, 20, 411–415.

    Article  Google Scholar 

  • Weiskopf, D. A. (2008). The origins of concepts. Philosophical Studies, 140, 359–384.

    Article  Google Scholar 

  • Wiesel, T., & Hubel, D. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology, 28, 1041–1059.

    Google Scholar 

  • Will, B., Dalrymple-Alford, J., Wolff, M., & Cassel, J. C. (2008). Reflections on the use of the concept of plasticity in neurobiology: Translation and adaptation by Bruno Will, John Dalrymple-Alford, Mathieu Wolff and Jean-Christophe Cassel from J. Paillard, J Psychol 1976. Behavioural Brain Research, 192, 7–11.

    Article  Google Scholar 

  • Willshaw, D. J., & von der Malsburg, C. (1976). How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London, B194, 431–445.

    Article  Google Scholar 

  • Wilson, S. P., Law, J. S., Mitchinson, B., Prescott, T. J., & Bednar, J. A. (2010). Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS ONE, 5, e8778.

    Article  Google Scholar 

  • Wonnacott, E. (2013). Learning: Statistical mechanisms in language acquisition. In P. Binder & K. Smith (Eds.), The language phenomenon (pp. 65–92). Berlin: Springer.

    Chapter  Google Scholar 

  • Xu, H., Chen, M. F. Y. S. M. H., Zenisek, S. L. K. D., Zhou, Z. J., Tian, D. A. B. N., Picciotto, M. R., et al. (2011). An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron, 71, 1141–1152.

    Article  Google Scholar 

  • Zeki, S. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology, 236, 549–573.

    Article  Google Scholar 

  • Zeki, S. (2015). Area V5—A microcosm of the visual brain. Frontiers in Integrative Neuroscience, 9, 21.

    Article  Google Scholar 

  • Zhang, J., Ackman, J., Xu, H. P., & Crair, M. C. (2011). Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience, 71, 1141–1152.

    Google Scholar 

  • Zhuo, M., & Hawkins, R. D. (1995). Long-term depression: A learning-related type of synaptic plasticity in the mammalian central nervous system. Reviews in the Neurosciences, 6, 259–277.

    Article  Google Scholar 

  • Zou, D., Feinstein, P., Rivers, A., Mathews, G., Kim, A., & Greer, C. (2004). Postnatal refinement of peripheral olfactory projections. Science, 304, 1976–1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Plebe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plebe, A., Mazzone, M. Neural plasticity and concepts ontogeny. Synthese 193, 3889–3929 (2016). https://doi.org/10.1007/s11229-016-1131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-016-1131-z

Keywords