[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A tight coupling mapping method to integrate the ESKF, g2o, and point cloud alignment

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

High-precision point cloud maps have drawn increasing attention due to their wide range of applications. In recent decades, point cloud maps are normally generated by simultaneous localization and mapping (SLAM) methods, which favor real-time performance over high precision. These methods generally focus on trajectory accuracy resulting in the unclearness of map accuracy. Therefore, to build a high-precision point cloud map and evaluate the mapping performance directly, this study proposes a tight coupling mapping method that integrates the error-state Kalman filter (ESKF), the general framework for graph optimization (g2o), and the point cloud alignment. An ESKF and a g2o are both used to improve the precision of the mapping process. Also, experiments based on a mobile mapping backpack prototype are conducted to verify the proposed method. Targets in the environment and a high-precision reference point cloud map are used to directly evaluate the map performance. The results indicate that the generated point cloud map is sufficiently precise and can reach the centimeter level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

EKF:

Extended Kalman filter

ESKF:

Error-state Kalman filter

ELS:

Enhanced line simplification

FG:

Factor graph

g2o:

General framework for graph optimization

GICP:

Generalized iterative closest point

ICP:

Iterative closest point

IMU:

Inertial measurement unit

LiDAR:

Light detection and ranging

NDT:

Normal distributions transform

SLAM:

Simultaneous localization and mapping

\(0_{3 \times 3}\) :

The zero matrix of size 3

\(a_{m}\) :

The output of the three-dimension accelerometer

\(a_{n}\) :

The white Gaussian noise of the accelerometer

\({\text{C}}_{{\text{L}}}^{{\text{I}}}\) :

The rotation matrix between LiDAR and IMU

\({\text{C}}_{{\text{i}}}^{{\text{X}}}\) :

The rotation matrix of Frame i in the coordinate system FX

Fk :

The state transition matrix at time-step k

F b :

The body-fixed front-right-down coordinate system

F g :

The g2o optimization coordinate system

F n :

The local north-east-down coordinate system

Hk + 1 :

The observation matrix at time-step k + 1

\({\text{I}}_{3 \times 3}\) :

The identity matrix of size 3

k :

Subscript k indicates the value is at time-step k

M :

Subscript M denotes the sensor measurement

\(n_{a}\) :

The Gaussian random walk noise of the accelerometer

\(n_{{\text{g}}}\) :

The Gaussian random walk noise of the gyroscope

\(p^{ + }\) :

The estimated position from the state equation

\(p_{{\text{L}}}\) :

The position from the vertexes in the g2o

\(q^{ + }\) :

The estimated quaternion from the state equation

\(q_{{\text{L}}}\) :

The position from the vertexes in the g2o

R:

The rotation matrix

T:

The superscript T represents the transpose operation

\({\text{t}}_{{\text{L}}}^{{\text{I}}}\) :

The translation vector between LiDAR and IMU

\({\text{t}}_{{\text{i}}}^{{\text{X}}}\) :

The position of Frame i in the coordinate system FX

\({\text{v}}^{ + }\) :

The estimated velocity from the state equation

\({\text{v}}_{{\text{L}}}\) :

The velocity from the vertexes in the g2o

\(x_{k}\) :

The state vector is at time-step k

\(z_{k}\) :

The measurement vector is at time-step k

\(\delta p\) :

The position error

\(\delta q\) :

The quaternion error

\(\delta {\text{v}}\) :

The velocity error

\(\delta \beta_{a}\) :

The accelerometer bias error

\(\delta \beta_{{\text{g}}}\) :

The gyroscope bias error

\(\delta \theta\) :

The attitude angle error concerning the quaternion

\(\Delta t\) :

The discrete-time interval

\(\omega_{m}\) :

The output of the three-dimension gyroscope

\(\omega_{n}\) :

The white Gaussian noise of the gyroscope

\(\cdot\) :

The superscript \(\cdot\) indicates derivatives

\(\otimes\) :

The multiplication of the quaternion

\(*\) :

The superscript \(*\) represents the conjugate operation

References

  1. Persad RA, Armenakis C (2015) ALIGNMENT OF POINT CLOUD DSMs FROM TLS AND UAV PLATFORMS. ISPRS – Int Arch Photogramm, Remote Sens Spatial Inf Sci 40(1):369–373. https://doi.org/10.5194/isprsarchives-XL-1-W4-369-2015

    Article  Google Scholar 

  2. Tian Y, Song W, Sun S, Fong S, Zou S (2019) 3D object recognition method with multiple feature extraction from LiDAR point clouds. J Supercomput 75(8):4430–4442. https://doi.org/10.1007/s11227-019-02830-9

    Article  Google Scholar 

  3. Ahmed W, Shi W, Xu W (2018) Modeling complex building structure (LoD2) using image-based point cloud. In: 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS). IEEE, 110–114

  4. Deschaud J-E (2018) IMLS-SLAM: Scan-to-model matching based on 3D Data. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2480–2485

  5. Wang C, Hou S, Wen C, Gong Z, Li Q, Sun X, Li J (2018) Semantic line framework-based indoor building modeling using backpacked laser scanning point cloud. ISPRS J Photogramm Remote Sens 143:150–166. https://doi.org/10.1016/j.isprsjprs.2018.03.025

    Article  Google Scholar 

  6. Schauer J, Nüchter A (2018) Removing non-static objects from 3D laser scan data. ISPRS J Photogramm Remote Sens 143:15–38. https://doi.org/10.1016/j.isprsjprs.2018.05.019

    Article  Google Scholar 

  7. Elseberg J, Borrmann D, Nüchter A (2013) One billion points in the cloud – an octree for efficient processing of 3D laser scans. ISPRS J Photogramm Remote Sens 76:76–88. https://doi.org/10.1016/j.isprsjprs.2012.10.004

    Article  Google Scholar 

  8. Wen J, Qian C, Tang J, Liu H, Ye W, Fan X (2018) 2D LiDAR SLAM back-end optimization with control network constraint for mobile mapping. Sensors 18(11):3668. https://doi.org/10.3390/s18113668

    Article  Google Scholar 

  9. Akai N, Morales LY, Takeuchi E, Yoshihara Y, Ninomiya Y Robust localization using 3D NDT scan matching with experimentally determined uncertainty and road marker matching. In: 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp 1356–1363

  10. Ren Z, Wang L, Bi L (2019) Robust GICP-based 3D LiDAR SLAM for underground mining environment. Sensors 19(13):2915. https://doi.org/10.3390/s19132915

    Article  Google Scholar 

  11. Le Gentil C, Vidal-Calleja T, Huang S (2020) IN2LAAMA: inertial lidar localization autocalibration and mapping. IEEE Trans on Robot 37(1):275–290. https://doi.org/10.1109/tro.2020.3018641

    Article  Google Scholar 

  12. Nagy B, Benedek C (2019) Real-time point cloud alignment for vehicle localization in a high resolution 3D Map. In: European Conference on Computer Vision. Springer International Publishing, 226–239 https://doi.org/10.1007/978-3-030-11009-3_13

  13. Zhang J, Singh S (2014) LOAM: lidar odometry and mapping in real-time. In: Robotics, Science and Systems Conference (RSS). SAGE, 1–9

  14. Pathak K, Birk A, Vaškevičius N, Poppinga J (2010) Fast registration based on noisy planes with unknown correspondences for 3-D mapping. IEEE Trans Rob 26(3):424–441. https://doi.org/10.1109/tro.2010.2042989

    Article  Google Scholar 

  15. Kummerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) G2o: A general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation:3607–3613. doi:https://doi.org/10.1109/ICRA.2011.5979949

  16. Wang D, Liang H, Mei T, Zhu H, Fu J, Tao X (2013) Lidar Scan matching EKF-SLAM using the differential model of vehicle motion.In: 2013 IEEE Intelligent Vehicles Symposium (IV):908–912. doi:https://doi.org/10.1109/IVS.2013.6629582

  17. Hess W, Kohler D, Rapp H, Andor D (2016) Real-time loop closure in 2D LIDAR SLAM. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 1271–1278

  18. Sunderhauf N, Protzel P (2012) Towards a robust back-end for pose graph SLAM. In: IEEE International Conference on Robotics and Automation. IEEE, 1254–1261

  19. Palomer A, Ridao P, Ribas D, Mallios A, Vallicrosa G (2013) A comparison of G2o graph SLAM and EKF pose based SLAM with bathymetry grids. IFAC Proc Vol 46(33):286–291. https://doi.org/10.3182/20130918-4-JP-3022.00065

    Article  Google Scholar 

  20. Wen W, Pfeifer T, Bai X, Hsu L-T (2020) It is time for factor graph optimization for GNSS/INS Integration: Comparison between FGO and EKF. arXiv pre-print server

  21. Chang L, Zha F, Qin F (2017) Indirect kalman filtering based attitude estimation for low-cost attitude and heading reference systems. IEEE/ASME Trans Mechatron 22(4):1850–1858. https://doi.org/10.1109/tmech.2017.2698639

    Article  Google Scholar 

  22. Sanjurjo E, Naya MÁ, Blanco-Claraco JL, Torres-Moreno JL, Giménez-Fernández A (2017) Accuracy and efficiency comparison of various nonlinear Kalman filters applied to multibody models. Nonlinear Dyn 88(3):1935–1951. https://doi.org/10.1007/s11071-017-3354-z

    Article  MathSciNet  Google Scholar 

  23. Weikun Z, Zeng S, Soberer S (2017) Robust localization and localizability estimation with a rotating laser scanner. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 6240–6245

  24. Qin C, Ye H, Pranata CE, Han J, Liu M (2019) LINS: A lidar-inerital state estimator for robust and fast navigation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 8899–8905

  25. Gao L, Battistelli G, Chisci L (2020) Random-finite-set-based distributed multirobot SLAM. IEEE Trans on Robotics. 36(6):1758–1777. https://doi.org/10.1109/tro.2020.3001664

    Article  Google Scholar 

  26. Fu H, Yu R, Ye L, Wu T, Xu X (2018) An efficient scan-to-map matching approach based on multi-channel lidar. J Intell Rob Syst 91(3–4):501–513. https://doi.org/10.1007/s10846-017-0717-0

    Article  Google Scholar 

  27. Wang K, Liu Y-H, Li L (2014) A Simple and parallel algorithm for real-time robot localization by fusing monocular vision and odometry/AHRS sensors. IEEE/ASME Trans Mechatron 19(4):1447–1457. https://doi.org/10.1109/tmech.2014.2298247

    Article  Google Scholar 

  28. Solà J (2017) Quaternion kinematics for the error-state Kalman filter. arXiv e-prints.

  29. Trawny N, Roumeliotis SI (2005) Indirect Kalman filter for 3D attitude estimation. University of Minnesota, Minneapolis, Dept. of Computer Science & Engineering

    Google Scholar 

  30. Fan W, Shi W, Xiang H, Ding K (2019) A novel method for plane extraction from low-resolution inhomogeneous point clouds and its application to a customized low-cost mobile mapping system. Remote Sens 11(23):2789–2810. https://doi.org/10.3390/rs11232789

    Article  Google Scholar 

  31. Shan T, Englot B, Meyers D, Wang W, Ratti C, Rus D (2020) LIO-SAM: Tightly-coupled Lidar inertial odometry via smoothing and mapping. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 5135–5142

  32. Wang C, Dai Y, Elsheimy N, Wen C, Retscher G, Kang Z, Lingua A (2020) ISPRS BENCHMARK ON MULTISENSORY INDOOR MAPPING AND POSITIONING. ISPRS Ann Photogramm, Remote Sens Spatial Inf Sci 5(5):117–123. https://doi.org/10.5194/isprs-annals-V-5-2020-117-2020

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by The Hong Kong Polytechnic University (1-ZVN6, 4-BCF7), The State Bureau of Surveying and Mapping, P.R. China (1-ZVE8), and Hong Kong Research Grants Council (T22-505/19-N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Wenzhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, B., Wenzhong, S., Wenzheng, F. et al. A tight coupling mapping method to integrate the ESKF, g2o, and point cloud alignment. J Supercomput 78, 1903–1922 (2022). https://doi.org/10.1007/s11227-021-03900-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03900-7

Keywords

Navigation