[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Application mapping in hybrid photonic networks-on-chip for reducing insertion loss

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, the influence of the mapping algorithm on the physical layer parameters and photonic network-on-chip performance is demonstrated. Four mapping algorithms, namely hop count, congestion, no-turn, and turn, have been suggested. The proposed mapping algorithms illustrate the impact of hop count, congestion, moving in the direct and indirect paths of the insertion loss, and energy dissipation. In the proposed plan, the random mapping algorithm in the worst case was compared to that in the best case, and the four provided mapping algorithms were compared with each other in terms of the insertion loss. According to the obtained results, the turn mapping algorithm in a mesh topology using gyrokinetic toroidal code in the worst case, random mapping algorithm in the best case, and no-turn mapping algorithm were improved by 75, 70, and 9.5%, respectively. The simulation results indicate that the proposed mapping algorithms reduce the energy dissipation and insertion loss compared to the random mapping algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. De Micheli G, Benini L (2006) Networks on chips: technology and tools. Academic Press, London

    Google Scholar 

  2. Shacham A, Bergman K, Carloni LP (2008) Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput 57(9):1246–1260. https://doi.org/10.1109/TC.2008.78

    Article  MathSciNet  Google Scholar 

  3. Goodman JW, Leonberger FI, Kung S-Y, Athale RA (1984) Optical interconnections for VLSI systems. Proc IEEE 72(7):850–866. https://doi.org/10.1109/PROC.1984.12943

    Article  Google Scholar 

  4. Shacham A, Lee BG, Biberman A, Bergman K, Carloni LP (2007) Photonic NoC for DMA communications in chip multiprocessors. In: 15th Annual IEEE Symposium on High-Performance Interconnects, 2007. HOTI 2007. IEEE, pp 29–38. https://doi.org/10.1109/hoti.2007.9

  5. Soref RA, Lorenzo JP (1986) All-silicon active and passive guided-wave components for lambda = 1.3 and 1.6 microns. IEEE J Quantum Electron 22:873–879. https://doi.org/10.1109/JQE.1986.1073057

    Article  Google Scholar 

  6. Meindl JD (1995) Low power microelectronics: retrospect and prospect. Proc IEEE 83(4):619–635. https://doi.org/10.1109/5.371970

    Article  Google Scholar 

  7. Miller DA (2000) Rationale and challenges for optical interconnects to electronic chips. Proc IEEE 88(6):728–749. https://doi.org/10.1109/5.867687

    Article  Google Scholar 

  8. Koohi S, Hessabi S (2014) Scalable architecture for all-optical wavelength-routed networks-on-chip. In: Palesi M, Daneshtalab M (eds) Routing algorithms in networks-on-chip. Springer, Berlin, pp 339–375

    Chapter  Google Scholar 

  9. Du J, Wang J (2017) Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty terabit-scale data transmission. Opt Express 25(24):30124–30134. https://doi.org/10.1364/oe.25.030124

    Article  Google Scholar 

  10. Lipson M (2005) Guiding, modulating, and emitting light on silicon-challenges and opportunities. J Lightwave Technol 23(12):4222–4238

    Article  Google Scholar 

  11. Gu H, Xu J, Zhang W (2009) A low-power fat tree-based optical network-on-chip for multiprocessor system-on-chip. In: Proceedings of the Conference on Design, Automation and Test in Europe. European Design and Automation Association, pp 3–8

  12. İmre KM (2016) Dual-mode routing approach for photonic network on chip platforms. J Supercomput 72(3):904–925. https://doi.org/10.1007/s11227-016-1620-3

    Article  Google Scholar 

  13. Lee BG, Biberman A, Sherwood-Droz N, Poitras CB, Lipson M, Bergman K (2009) High-speed 2 × 2 switch for multiwavelength silicon-photonic networks-on-chip. J Lightwave Technol 27(14):2900–290713

    Article  Google Scholar 

  14. Werner S, Navaridas J, Luján M (2017) A survey on optical network-on-chip architectures. ACM Comput Surv (CSUR) 50(6):89. https://doi.org/10.1145/3131346

    Article  Google Scholar 

  15. Syms R, Cozens J (1992) Optical guided waves and devices. McGraw-Hill, London

    Google Scholar 

  16. Coppola M, Grammatikakis MD, Locatelli R, Maruccia G, Pieralisi L (2008) Design of cost-efficient interconnect processing units: Spidergon STNoC. CRC Press, London

    Book  Google Scholar 

  17. Wang H, Petracca M, Biberman A, Lee BG, Carloni LP, Bergman K (2008) Nanophotonic optical interconnection network architecture for on-chip and off-chip communications. In: Optical Fiber Communication Conference. Optical Society of America, p JThA92

  18. Chan J, Hendry G, Biberman A, Bergman K (2010) Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis. J Lightwave Technol 28(9):1305–1315

    Article  Google Scholar 

  19. Chang Z, Tang J, Jin Y (2009) An insertion loss balance aware routing scheme in photonic network on chip. In: 7th International Conference on Information, Communications and Signal Processing, 2009. ICICS 2009. IEEE, pp 1–5. https://doi.org/10.1109/icics.2009.5397522

  20. Hendry G, Chan J, Kamil S, Oliker L, Shalf J, Carloni LP, Bergman K (2010) Silicon nanophotonic network-on-chip using TDM arbitration. In: 2010 IEEE 18th Annual Symposium on High Performance Interconnects (HOTI). IEEE, pp 88–95. https://doi.org/10.1109/hoti.2010.12

  21. Guo L, Hou W, Guo P (2017) Designs of 3D mesh and torus optical network-on-chips: topology, optical router and routing module. China Commun 14(5):17–29. https://doi.org/10.1109/cc.2017.7942191

    Article  Google Scholar 

  22. Shacham A, Bergman K, Carloni LP (2007) On the design of a photonic network-on-chip. In: Proceedings of the First International Symposium on Networks-on-Chip. IEEE Computer Society, pp 53–64. https://doi.org/10.1109/nocs.2007.35

  23. Chan J, Biberman A, Lee BG, Bergman K (2008) Insertion loss analysis in a photonic interconnection network for on-chip and off-chip communications. IEEE Lasers Electro-Opt Soc (LEOS). https://doi.org/10.1109/LEOS.2008.4688609

    Google Scholar 

  24. Ahmed AB, Abdallah AB (2015) Hybrid silicon-photonic network-on-chip for future generations of high-performance many-core systems. J Supercomput 71(12):4446–4475. https://doi.org/10.1007/s11227-015-1539-0

    Article  Google Scholar 

  25. Gu H, Mo KH, Xu J, Zhang W (2009) A low-power low-cost optical router for optical networks-on-chip in multiprocessor systems-on-chip. In: IEEE Computer Society Annual Symposium on VLSI, 2009. ISVLSI’09, 2009. IEEE, pp 19–24. https://doi.org/10.1109/isvlsi.2009.19

  26. Ye Y, Xu J, Wu X, Zhang W, Liu W, Nikdast M, Wang X, Wang Z, Wang Z (2012) Thermal analysis for 3D optical network-on-chip based on a novel low-cost 6 × 6 optical router. In: Optical Interconnects Conference, 2012. IEEE, 2012. IEEE, pp 110–111. https://doi.org/10.1109/oic.2012.6224422

  27. Shabani H, Roohi A, Reza A, Reshadi M, Bagherzadeh N, DeMara RF (2016) Loss-aware switch design and non-blocking detection algorithm for intra-chip scale photonic interconnection networks. IEEE Trans Comput 65(6):1789–1801. https://doi.org/10.1109/TC.2015.2458866

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo P, Hou W, Guo L, Yang Q, Ge Y, Liang H (2018) Low insertion loss and non-blocking microring-based optical router for 3D optical network-on-chip. IEEE Photonics J 10(2):1–10. https://doi.org/10.1109/jphot.2018.2796094

    Article  Google Scholar 

  29. Meyer M, Okuyama Y, Abdallah AB (2017) Microring fault-resilient photonic network-on-chip for reliable high-performance many-core systems. J Supercomput 73(4):1567–1599. https://doi.org/10.1007/s11227-016-1846-0

    Article  Google Scholar 

  30. Bergman K, Carloni LP, Biberman A, Chan J, Hendry G (2014) Photonic network-on-chip design. Springer, Berlin. https://doi.org/10.1007/978-1-4419-9335-9

    Book  Google Scholar 

  31. Xia F, Sekaric L, Vlasov Y (2007) Ultracompact optical buffers on a silicon chip. Nat Photonics 1(1):65–71. https://doi.org/10.1038/nphoton.2006.42

    Article  Google Scholar 

  32. Bogaerts W, Dumon P, Van Thourhout D, Baets R (2007) Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt Lett 32(19):2801–2803. https://doi.org/10.1364/OL.32.002801

    Article  Google Scholar 

  33. Lee BG, Biberman A, Dong P, Lipson M, Bergman K (2008) All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photonics Technol Lett 20(10):767–769. https://doi.org/10.1109/LPT.2008.921100

    Article  Google Scholar 

  34. Watts MR, Trotter DC, Young RW, Lentine AL (2008) Ultralow power silicon microdisk modulators and switches. In: 5th Annual Conference on Group IV Photonics, pp 4–6. https://doi.org/10.1109/group4.2008.4638077

  35. Chan J, Bergman K (2012) Photonic interconnection network architectures using wavelength-selective spatial routing for chip-scale communications. J Opt Commun Netw 4(3):189–201. https://doi.org/10.1364/JOCN.4.000189

    Article  Google Scholar 

  36. Jerger NE, Peh L-S (2009) On-chip networks. Synth Lect Comput Archit 4(1):1–141. https://doi.org/10.2200/S00209ED1V01Y200907CAC008

    Article  Google Scholar 

  37. Rantala V, Lehtonen T, Plosila J (2006) Network on chip routing algorithms. Citeseer

  38. Khoroush S, Reshadi M (2013) A fault tolerant approach for application-specific network-on-chip. In: NORCHIP, 2013. IEEE, pp 1–6. https://doi.org/10.1109/norchip.2013.6702014

  39. Hendry G, Kamil S, Biberman A, Chan J, Lee BG, Mohiyuddin M, Jain A, Bergman K, Carloni LP, Kubiatowicz J (2009) Analysis of photonic networks for a chip multiprocessor using scientific applications. In: 3rd ACM/IEEE International Symposium on Networks-on-Chip, 2009. NoCS 2009. IEEE, pp 104–113. https://doi.org/10.1109/nocs.2009.5071458

  40. Lin Z, Ethier S, Hahm T, Tang W (2002) Size scaling of turbulent transport in magnetically confined plasmas. Phys Rev Lett 88(19):195004. https://doi.org/10.1103/PhysRevLett.88.195004

    Article  Google Scholar 

  41. Cactus (2004) http://www.cactuscode.org

  42. Borrill J, Carter J, Oliker L, Skinner D, Biswas R (2005) Integrated performance monitoring of a cosmology application on leading HEC platforms. In: 2005 International Conference on Parallel Processing (ICPP’05). IEEE, pp 119–128. https://doi.org/10.1109/icpp.2005.47

  43. Hendry G, Chan J (2011) PhoenixSim 1.0 User Manual. Lightwave Research Lab, Columbia University, New York

  44. Varga A, Hornig R (2008) An overview of the OMNeT++ simulation environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems and Workshops, 2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), p 60

  45. Varga A (2001) The OMNeT ++ discrete event simulation system. In: Proceedings of the European Simulation Multiconference (ESM’2001), vol S 185. sn, p 65

  46. Chan J, Hendry G, Bergman K, Carloni LP (2011) Physical-layer modeling and system-level design of chip-scale photonic interconnection networks. IEEE Trans Comput Aided Des Integr Circuits Syst 30(10):1507–1520. https://doi.org/10.1109/TCAD.2011.2157157

    Article  Google Scholar 

  47. Chan J, Hendry G, Biberman A, Bergman K, Carloni LP (2010) Phoenixsim: a simulator for physical-layer analysis of chip-scale photonic interconnection networks. In: Proceedings of the Conference on Design, Automation and Test in Europe. European Design and Automation Association, pp 691–696

  48. Hendry G, Robinson E, Gleyzer V, Chan J, Carloni LP, Bliss N, Bergman K (2010) Circuit-switched memory access in photonic interconnection networks for high-performance embedded computing. In: 2010 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2010. IEEE, pp 1–12. https://doi.org/10.1109/sc.2010.13

  49. Liu L, Yang Y (2013) Energy-aware routing in hybrid optical network-on-chip for future multi-processor system-on-chip. J Parallel Distrib Comput 73(2):189–197. https://doi.org/10.1016/j.jpdc.2012.09.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Midia Reshadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoroush, S., Reshadi, M. & Khademzadeh, A. Application mapping in hybrid photonic networks-on-chip for reducing insertion loss. J Supercomput 74, 4647–4671 (2018). https://doi.org/10.1007/s11227-018-2458-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2458-7

Keywords

Navigation