[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

PGSW-OS: a novel approach for resource management in a semantic web operating system based on a P2P grid architecture

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A web operating system is an operating system that users can access from any hardware at any location. A peer-to-peer (P2P) grid uses P2P communication for resource management and communication between nodes in a grid and manages resources locally in each cluster, and this provides a proper architecture for a web operating system. Use of semantic technology in web operating systems is an emerging field that improves the management and discovery of resources and services. In this paper, we propose PGSW-OS (P2P grid semantic Web OS), a model based on a P2P grid architecture and semantic technology to improve resource management in a web operating system through resource discovery with the aid of semantic features. Our approach integrates distributed hash tables (DHTs) and semantic overlay networks to enable semantic-based resource management by advertising resources in the DHT based upon their annotations to enable semantic-based resource matchmaking. Our model includes ontologies and virtual organizations. Our technique decreases the computational complexity of searching in a web operating system environment. We perform a simulation study using the Gridsim simulator, and our experiments show that our model provides enhanced utilization of resources, better search expressiveness, scalability, and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tanenbaum A (1992) Modern operating systems. Prentice Hall PTR, Upper Saddle River

    MATH  Google Scholar 

  2. Tanenbaum A (2002) Distributed system: principles and paradigms. Prentice Hall, New Jersey

    Google Scholar 

  3. Mufti A, Salah K (2002) Web operating system. In: Workshop on information and computer science, pp 279–287

  4. Shamshirband Sh (2012) A distributed approach for coordination between traffic lights based on game theory. Intern Arab J Info Technol (IAJIT) 9(2):148–153

    Google Scholar 

  5. Vahdat A, Anderson Th, Dahlia M et al (1998) WebOS: operating system services for wide-area applications. In: Proceedings of the seventh IEEE symposium on high performance distributed computing (HPDC), Chicago, pp 52–63

  6. Glose OS: http://www.glidedigital.com

  7. Armbrust M, Fox A, Griffith R et al (2009) Above the clouds: a Berkeley view of cloud computing. UC Berkeley Reliable Adaptive Distributed Systems Laboratory, University of California, Berkeley

    Google Scholar 

  8. Rana S (2014) Technology and artitecture design of web based operating system. Intern J Info Technol Comput Sci Persp 2(4):741–743

    Google Scholar 

  9. Baccarelli E, Cordeschi N, Polli V (2013) Optimal self-adaptive QoS resource management in interference-affected multicast wireless networks. IEEE/ACM Trans Netw 21(6):1750–1759

    Article  Google Scholar 

  10. Pooranian Z, Shojafar M, Abawajy JH, Abraham A (2013) An efficient meta-heuristic algorithm for grid computing. Spring J Combinat Optim (JOCO). doi:10.1007/s10878-013-9644-6

  11. Coppens S et al (2014) A semantic workflow engine powered by grid reasoning. In: Proceedings of the international workshop on managing ubiquitous communications and services

  12. Kourtesis D Jose, María AR, Iraklis P (2014) Semantic-based QoS management in cloud systems: current status and future challenges. Fut Gener Comput Syst 32:307–323

    Article  Google Scholar 

  13. Javanmardi S, Shariatmadari S, Mosleh M (2013) A novel decentralized fuzzy based approach for grid resource discovery. Intern J Innov Comput 1(1):23–32

  14. Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Scient Amer 284(5):34–43

    Article  Google Scholar 

  15. Shadbolt N, Berners-Lee T, Hall W (2006) The semantic web revisited. IEEE Intell Syst 21(3):96–101

    Article  Google Scholar 

  16. McGuinness DL, Van Harmelen F (2004) OWL web ontology language overview, W3C recommendation, 10

  17. Mosleh M, Shariatmadari Sh, Javanmardi S (2012) Resource management in web OS based on semantic web technology. Glob J Technol Optim 3:54–58

    Google Scholar 

  18. Doulkeridis Ch, Vlachou A, Norvag K, Vazirgiannis M (2010) Distributed semantic overlay networks. Handb Peer-to-Peer Netw 4:463–494

    Article  Google Scholar 

  19. Chen Sh, Du X, Ma F, Shen J (2005) A grid resource management approach based on P2P technology. In: Proceedings of the eighth international conference on high-performance computing in Asia-Pacific region (HPCASIA’05), pp 362–369

  20. Shamshirband S, Patel A, Anuar NB, Kiah MLM (2014) Cooperative game theoretic approach using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks. Eng Appl Artif Intell. doi:10.1016/j.engappai.2014.02.001

  21. Gendai G, Xindong L (2010) Simple web OS system based on Ext framework and cloud computing. Intern Forum Info Technol Appl (IFITA) 1:448–450

    Article  Google Scholar 

  22. Chandra DG, Malaya DB (2012) A study on cloud OS. In: International conference on communication systems and network technologies, Rajkot, 11–13 May, pp 692–697

  23. Wu Ch, Pan Y, Yu H, Chen H, Yu Ch (2011) One click to build an on demand virtual cluster in cloud web-based operating system with dynamic loading prediction scheduling algorithm, In: The second international conference on cloud computing, GRIDs, and virtualization, pp 13–19

  24. Patel L, Singh G, Gupta R (2012) LINUX based cloud operating system. IJEIR 1(1):18–22

    Google Scholar 

  25. Jin-Neng W et al (2013) Heterogeneous diskless remote booting system on cloud operating system., Grid and pervasive computingSpringer, Berlin

    Google Scholar 

  26. Anudeep M (2012) Design and analysis of peer 2 peer operating system, Master thesis. Jawaharlal Nehru Technological University, Hyderabad

    Google Scholar 

  27. Smets-Solanes JP, Cerin C (2011) SlapOS: a multi-purpose distributed cloud operating system based on an ERP billing model. In: IEEE international conference services computing (CSC), Washington 4–9 July, pp 765–766

  28. Dai YS, Wang XL (2006) Optimal resource allocation on grid systems for maximizing service reliability using a genetic algorithms. Reliabil Eng Syst Safe 91(9):1071–1082

    Article  Google Scholar 

  29. Ejarque J, Micsik A, Sirvent R, Pallinger P, Kovacs L, Badia R (2010) Semantic resource allocation with historical data based predictions. In: The first international conference on cloud computing, GRIDs, and virtualization, pp 104–109

  30. Mario C, Talia D (2004) Semantics and knowledge grids: building the next-generation grid. IEEE Intell Syst 19(1):56–63

    Article  Google Scholar 

  31. Andrade N, Santos-Neto E, Brasileiro F (2008) Scalable resource annotation in peer-to-peer grids, In: 18th International conference on peer-to-peer computing, (P2P ’08), Aachen, 8–11 September, pp 231–234

  32. Di S, Wang CL (2012) Decentralized proactive resource allocation for maximizing throughput of P2P grid. Elsev J Parallel Distrib Comput 72(2):308–321

    Article  Google Scholar 

  33. Andrade N, Cirne W, Brasileiro F (2003) OurGrid: an approach to easily assemble grids with equitable resource sharing. Job scheduling strategies for parallel processing. Springer-Verlag, Berlin, pp 61–86

    Google Scholar 

  34. Butt A, Zhang R, Hu Y (2006) A self-organizing flock of condors. Elsev J Parallel Distrib Comput 66(1):145–161

    Article  MATH  Google Scholar 

  35. Lawton G (2008) Moving the OS to the Web. Comput IEEE Comput Soc 41(3):16–19

    Article  Google Scholar 

  36. Sanchez F, García R, Bejar RF, Breis J (2009) An ontology, intelligent agent-based framework for the provision of semantic web services. Exp Syst Appl 36(2):3167–3187

    Article  Google Scholar 

  37. Cordeschi N, Shojafar M, Baccarelli E (2013) Energy-saving self-configuring networked data centers. Comput Netw 57(17):3479–3491

    Article  Google Scholar 

  38. http://ezilla.info/

  39. http://www.ezilla-nchc.sourceforge.net/

  40. Sotomayor B, Montero R, Llorente I, Foster I (2009) Resource leasing and the art of suspending virtual machines, In: 11th IEEE inter-national conference on HPCC ’09, pp 59–68

  41. Halinka T (2008) The openQRM user’s guide. http://www.openqrm.com/

  42. Krone O, Schubiger S (1999) WEBRES: towards a web operating system. Springer, KiVS

    Google Scholar 

  43. Kapil G, et al (2012) Xml based lucid web operating system, In: IEEE international conference on engineering education: innovative practices and future trends (AICERA), pp 1–3

  44. Ostrowski DA (2012) A scalable, lightweight webOS application framework, In: IEEE first international conference on internet operating systems (ICIOS), Irvin, 10–12 December, pp 5–8

  45. Stefan T, Vinoski S (2010) Node.js: using JavaScript to build high-performance network programs. IEEE Inter Comput 14(6):80–83

    Article  Google Scholar 

  46. Anderson JC, Lehnardt J, Slater N (2010) CouchDB: the definitive guide. O’Reilly Media Inc, USA

    Google Scholar 

  47. Riad AM, Elminir HK, ElSoud MA, Sabbeh SF (2010) Sewos: a framework for semantic web operating system. Intern J Electr Comput Sci IJECS-IJENS 10(1):1–12

    Google Scholar 

  48. Riad AM, Elminir HK, ElSoud MA, Sabbeh SF (2011) SEWOS: bringing semantics into web operating system. IJCSI 8(3):16–19

    Google Scholar 

  49. Jun G, Chen Ch (2012) Research on chord searching algorithm base on cache strategy. Elsev Phys Procedia 25:905–910

    Article  Google Scholar 

  50. Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek MF, Dabek F, Balakrishnan H (2003) Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans Netw 11(1):17–32

    Article  Google Scholar 

  51. Pooranian Z, Harounabadi A, Shojafar M, Hedayat N (2011) New hybrid algorithm for task scheduling in grid computing to decrease missed task. World Acad Sci Eng Technol 55:5–9

    Google Scholar 

  52. Meditskos G, Bassiliades N (2010) Structural and role-oriented web service discovery with taxonomies in OWL-S. IEEE Trans Knowl Data Eng (TKDE) 22(2):278–290

    Article  Google Scholar 

  53. Andreasen T, Bulskov H, Knappe R (2003) From ontology over similarity to query evaluation, In: 2nd CoLogNET-ElsNET symposium—questions and answers: theoretical and applied, perspectives, pp 39–50

  54. Pooranian Z, Shojafar M, Javadi B (2012) Independent task scheduling in grid computing based on queen bee algorithm. IAES Int J Artif Intell 1(4):171–181. doi:10.11591/ij-ai.v1i4.1229

  55. Heine F, Hovestadt M, Kao O (2004) Towards ontology-driven P2P grid resource discovery, In: International IEEE/ACM workshop on grid computing, pp 76–83

  56. Qureshi K, Rehman A, Manuel P (2011) Enhanced GridSim architecture with load balancing. Spring J Supercomput 57(3):265–275

    Article  Google Scholar 

  57. Lasbleiz J, Brillet E, Decaux O, Duvauferrier R (2011) Staging disease with Protégé 4: example of multiple myeloma. IRBM 32(6):329–331

    Article  Google Scholar 

  58. Eggemann N, Noble S (2011) The clustering coefficient of a scale free random graph. Discr Appl Math 159(10):953–965

    Article  MATH  MathSciNet  Google Scholar 

  59. Baccarelli E, Cordeschi N, Patriarca T (2012) QoS stochastic traffic engineering for the wireless support of real-time streaming applications. Comput Netw 56(1):287–302

    Article  Google Scholar 

  60. Javanmardi S, Shojafar M, Shariatmadari Sh, Ahrabi SS (2014) FR TRUST: a fuzzy reputation based model for trust management in semantic P2P grids, inderscience. Intern J Grid Util Comput. http://arxiv.org/abs/1404.2632

Download references

Acknowledgments

The authors of this paper would like to thank Miroslaw Korzeniowski at Wroclaw University of Technology, Damià Castellà (researcher and research fellow at the University of Lleida), and Yunjia Li (Ph.D. candidate and research fellow at the University of Southampton) for their kind comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shojafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javanmardi, S., Shojafar, M., Shariatmadari, S. et al. PGSW-OS: a novel approach for resource management in a semantic web operating system based on a P2P grid architecture. J Supercomput 69, 955–975 (2014). https://doi.org/10.1007/s11227-014-1221-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1221-y

Keywords

Navigation