Abstract
The rapidly growing field of nature-inspired computing concerns the development and application of algorithms and methods based on biological or physical principles. This approach is particularly compelling for practitioners in high-performance computing, as natural algorithms are often inherently parallel in nature (for example, they may be based on a “swarm”-like model that uses a population of agents to optimize a function). Coupled with rising interest in nature-based algorithms is the growth in heterogenous computing; systems that use more than one kind of processor. We are therefore interested in the performance characteristics of nature-inspired algorithms on a number of different platforms. To this end, we present a new OpenCL-based implementation of the Ant Colony Optimization algorithm, and use it as the basis of extensive experimental tests. We benchmark the algorithm against existing implementations, on a wide variety of hardware platforms, and offer extensive analysis. This work provides rigorous foundations for future investigations of Ant Colony Optimization on high-performance platforms.
Similar content being viewed by others
Notes
Full technical details at http://docs.nvidia.com/cuda/index.html.
References
Alba E, Luque G, Nesmachnow S (2013) Parallel metaheuristics: recent advances and new trends. Int Trans Oper Res 20(1):1–48. doi:10.1111/j.1475-3995.2012.00862.x
Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli OO (2010) State-of-the-art in heterogeneous computing. Sci Progr 18(1):1–33
Cecilia JM, Garcia JM, Nisbet A, Amos M, Ujaldón M (2013) Enhancing data parallelism for ant colony optimization on GPUs. J Parallel Distrib Comput 73(1):42–51
Cecilia JM, Garcia JM, Ujaldon M, Nisbet A, Amos M (2011) Parallelization strategies for ant colony optimisation on GPUs. In: Proceedings of the 2011 IEEE international symposium on parallel and distributed processing. IEEE, pp 339–346
Chang RSS, Chang JSS, Lin PSS (2009) An ant algorithm for balanced job scheduling in grids. Future Gener Comput Syst 25(1):20–27. doi:10.1016/j.future.2008.06.004
Chen Y, Miao D, Wang R (2010) A rough set approach to feature selection based on ant colony optimization. Pattern Recognit Lett 31(3):226–233. doi:10.1016/j.patrec.2009.10.013
Delévacq A, Delisle P, Gravel M, Krajecki M (2013) Parallel ant colony optimization on graphics processing units. J Parallel Distrib Comput 73(1):52–61. doi:10.1016/j.jpdc.2012.01.003
Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1(4):28–39
Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst 16(8):851–871
Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation (CEC’99). IEEE Press, pp 1470–1477
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26(1):29–41
Dorigo M, Stutzle T (2004) Ant Colony Optimization. Bradford Company
Dorigo M, Stützle T (2010) Ant colony optimization: overview and recent advances. In: Handbook of metaheuristics. Springer, Berlin, pp 227–263
Flannery BP, Press WH, Teukolsky SA, Vetterling W (1992) Numerical recipes in c. Press Syndicate of the University of Cambridge, New York
Garcia MP, Montiel O, Castillo O, Sepúlveda R, Melin P (2009) Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl Soft Comput 9(3):1102–1110. doi:10.1016/j.asoc.2009.02.014
Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional, Reading
He B, Govindaraju NK, Luo Q, Smith B (2007) Efficient gather and scatter operations on graphics processors. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. ACM, New York, pp 46–57
Johnson DS, McGeoch LA (1997) The traveling salesman problem: a case study in local optimization. In: Lenstra J, Aarts E (eds) Local search in combinatorial optimization. Wiley, New York, pp 215–310
Ke BR, Chen MC, Lin CL (2009) Block-layout design using max-min ant system for saving energy on mass rapid transit systems. IEEE Trans Intell Transp Syst 10(2):226–235. doi:10.1109/TITS.2009.2018324
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4. IEEE, pp 1942–1948
Komarudin Wong KY (2010) Applying ant system for solving unequal area facility layout problems. Eur J Oper Res 202(3):730–746. doi:10.1016/j.ejor.2009.06.016
Lee VW, Kim C, Chhugani J, Deisher M, Kim D, Nguyen AD, Satish N, Smelyanskiy M, Chennupaty S, Hammarlund P (2010) Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu. In: ACM international symposium on computer architecture. ACM, pp 451–460
Manfrin M, Birattari M, Stützle T, Dorigo M (2006) Parallel ant colony optimization for the traveling salesman problem. In: Ant colony optimization and swarm intelligence. Springer, Berlin, pp 224–234
Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with cuda. Queue 6(2):40–53
Nvidia (2011) CUDA Toolkit 4.0 CURAND Guide. http://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CURAND_Library.pdf
Pedemonte M, Nesmachnow S, Cancela H (2011) A survey on parallel ant colony optimization. Appl Soft Comput 11(8):5181–5197. doi:10.1016/j.asoc.2011.05.042
Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3(4):376–384. Library available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
Rozenberg G, Bäck T, Kok JN (2011) Handbook of natural computing. Springer, Berlin
Stone JE, Gohara D, Shi G (2010) OpenCL: a parallel programming standard for heterogeneous computing systems. Comput Sci Eng 12(3):66–72. doi:10.1109/MCSE.2010.69
Stützle T (1998) Parallelization strategies for ant colony optimization. In: Parallel Problem Solving from Nature (PPSN V). Springer, Berlin, pp 722–731
Stutzle T, Hoos HH (2000) MAX-MIN ant system. Future Gener Comput Syst 16(8):889–914
Yu B, Yang ZZ, Yao B (2009) An improved ant colony optimization for vehicle routing problem. Eur J Oper Res 196(1):171–176. doi:10.1016/j.ejor.2008.02.028
Zhu W, Curry J (2009) Parallel ant colony for nonlinear function optimization with graphics hardware acceleration. In: IEEE international conference on systems, man and cybernetics, 2009, SMC 2009. IEEE, pp 1803–1808
Acknowledgments
This work is jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grant 15290/PI/2010, by the Spanish MEC and European Commission FEDER under grant TIN2012-31345, by the UCAM under grant PMAFI/26/12, by the Junta de Andalucía under Project of Excellence P12-TIC-1741 and by the supercomputing infrastructure of the NLHPC (ECM-02). We also thank NVIDIA for hardware donation under CUDA Teaching Center 2011-14, CUDA Research Center 2012-14 and CUDA Fellow 2012-14 Awards.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guerrero, G.D., Cecilia, J.M., Llanes, A. et al. Comparative evaluation of platforms for parallel Ant Colony Optimization. J Supercomput 69, 318–329 (2014). https://doi.org/10.1007/s11227-014-1154-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-014-1154-5