[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

State-of-the-art research study for green cloud computing

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Although cloud computing has rapidly emerged as a widely accepted computing paradigm, the research on cloud computing is still at an early stage. Cloud computing suffers from different challenging issues related to security, software frameworks, quality of service, standardization, and power consumption. Efficient energy management is one of the most challenging research issues. The core services in cloud computing system are the SaaS (Software as a Service), PaaS (Platform as a Service), and IaaS (Infrastructure as a Service). In this paper, we study state-of-the-art techniques and research related to power saving in the IaaS of a cloud computing system, which consumes a huge part of total energy in a cloud computing system. At the end, some feasible solutions for building green cloud computing are proposed. Our aim is to provide a better understanding of the design challenges of energy management in the IaaS of a cloud computing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buyya R, Yeo CS, Venugopa S (2008) Market-oriented cloud computing: vision, hype, and reality for delivering it services as computing utilities. In: 10th IEEE international conference on high performance computing and communications (HPCC’08), Dalian, China, 2008, pp 5–13

    Chapter  Google Scholar 

  2. Zhang Q, Cheng L, Boutaba R (2010) Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl 1(1):7–18

    Article  Google Scholar 

  3. Hamilton J (2009) Cooperative expendable micro-slice servers (CEMS): low cost, low power servers for internet-scale services. In: Proceedings of CIDR’09, California, USA

    Google Scholar 

  4. NIST Definition of Cloud Computing v15. http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc

  5. Opennebula. http://www.opennebula.org/

  6. Eucalyptus. www.eucalyptus.com

  7. Markoff J, Hansell S (2006) Hiding in plain sight, google seeks more power. New York Times, 14 June 2006

  8. Ministry of economy, trade and industry, government of Japan (2008) Establishment of the Japan Data Center Council, Press Release

  9. The Green Grid Consortium. http://www.thegreengrid.org

  10. Berl A, Gelenbe E, Di Girolamo M et al (2009) Energy-efficient cloud computing. Comput J 53(7):1045–1051

    Article  Google Scholar 

  11. Sweeney J, Bradfield J (2008) Reducing data center’s power and energy consumption: saving money and go ‘Green’. White paper

  12. Sawyer R (2004) Calculating total power requirements for data centers. White paper

  13. Intel Corporation (2009) Why the Intel® Xeon® processor 5500 series is the ideal foundation for cloud computing. White paper

  14. Farre T, Bulkeley (2009) Energy-efficient servers: a bright spot in the cloud. AMD online

  15. ACPI Standard. http://www.acpi.info/

  16. IEEE 802.3 Standard (2006) http://standards.ieee.org/getieee802/802.3.html

  17. Jejurikar R, Pereira C, Gupta RK (2004) Leakage aware dynamic voltage scaling for real-time embedded systems. In: Proceedings of the 41st design automation conference (DAC’04), San Diego, USA, pp 275–280

    Google Scholar 

  18. Benini L, Bogliolo A, Micheli GD (2000) A survey of design techniques for system-level dynamic power management. IEEE Trans Very Large Scale Integr (VLSI) 8(3):299–316

    Article  Google Scholar 

  19. Yao F, Demers A, Shenker S (1995) A scheduling model for reduced CPU energy. In: Proceedings of the 36th annual symposium on foundations of computer science (FOCS’95), Milwaukee, Wisconsin, pp 374–382

    Google Scholar 

  20. Scordino C, Lipari G (2006) A resource reservation algorithm for power-aware scheduling of periodic and aperiodic real-time tasks. IEEE Trans Comput 55(12):1509–1522

    Article  Google Scholar 

  21. Qiu M, Sha EH-M (2009) Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems. ACM Trans Des Autom Electron Syst 14(2):1–30

    Article  Google Scholar 

  22. Cheng H, Goddard S (2006) Online energy-aware i/o device scheduling for hard real-time systems. In: Proceedings of design, automation and test in Europe (DATE’06), Munich, Germany, pp 1055–1060

    Google Scholar 

  23. Aydin H, Devadas V, Zhu D (2006) System-level energy management for periodic real-time tasks. In: Proceedings of the 27th IEEE real-time systems symposium (RTSS’06), Rio de Janeiro, pp 313–322

    Google Scholar 

  24. Yan L, Luo J, Jha NK (2005) Joint dynamic voltage scaling and adaptive body biasing for heterogeneous distributed real-time embedded systems. IEEE Trans Comput-Aided Des Integr Circuits Syst 24(7):1030–1041

    Article  Google Scholar 

  25. Qiu M, Yang LT, Shao Z et al (2010) Dynamic and leakage energy minimization with soft real-time loop scheduling and voltage assignment. IEEE Trans Very Large Scale Integr (VLSI) Syst 18(3):501–504

    Article  Google Scholar 

  26. Aydin H, Qi Y (2003) Energy-aware partitioning for multiprocessor real-time systems. In: Proceedings of the 17th international parallel and distributed processing symposium, 113b

    Google Scholar 

  27. Baruah SK (2004) Optimal utilization bounds for the fixed-priority scheduling of periodic task systems on identical multiprocessors. IEEE Trans Comput 53(6):781–784

    Article  Google Scholar 

  28. Zhu D, Melhem R, Childers BR (2003) Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real time systems. IEEE Trans Parallel Distrib Syst 14(7):686–699

    Article  Google Scholar 

  29. Chen JJ, Hsu HR, Chuang KH et al (2004) Multiprocessor energy-efficient scheduling with task migration considerations. In: 16th EuroMicro conference on real-time systems (ECRTS’04), pp 101–108

    Google Scholar 

  30. Chen JJ, Hsu HR, Kuo TW (2006) Leakage-aware energy-efficient scheduling of real-time tasks in multiprocessor systems. In: 12th IEEE real-time and embedded technology and applications symposium (RTAS’06), pp 408–417

    Chapter  Google Scholar 

  31. Barroso LA, Holzle U (2007) The case for energy-proportional computing. Computer 41(12):33–37

    Article  Google Scholar 

  32. Ranganathan P, Leech P, Irwin D et al (2006) Ensemble-level power management for dense blade. In: Proceedings of the 33rd annual international symposium on computer architecture (ISCA’06), Boston, USA, pp 66–77

    Google Scholar 

  33. Elnozahy EN, Kistler M, Rajamony R (2002) Energy-efficient server clusters. In: Proceedings of the 2nd workshop on power-aware computing systems, pp 179–197

    Google Scholar 

  34. Pinheiro E, Bianchini R, Carrera EV et al (2001) Load balancing and unbalancing for power and performance in cluster-based systems. In: Proceedings of the international workshop on compilers and operating systems for low power

    Google Scholar 

  35. Chase JS, Anderson DC, Thakar PN et al (2001) Managing energy and server resources in hosting centers. In: Proceedings of the 18th ACM symposium on operating systems principles (SOSP’01), Banff, Canada, pp 103–116

    Google Scholar 

  36. Heath T, Diniz B, Carrera EV et al (2005) Energy conservation in heterogeneous server clusters. In: Proceedings of the 10th ACM SIGPLAN symposium on principles and practice of parallel programming (PPoPP’05), Chicago, USA, pp 186–195

    Google Scholar 

  37. Barham P, Dragovic B, Fraser K et al (2003) Xen and the art of virtualization. In: Proceedings of the 19th ACM symposium on operating systems principles (SOSP’03), Bolton Landing, USA, pp 164–177

    Google Scholar 

  38. VMware. http://www.vmware.com/

  39. Microsoft Hyper-V. http://www.microsoft.com/hyper-v-server/en/us/default.aspx

  40. Somani G, Chaudhary S (2009) Application performance isolation in virtualization. In: IEEE international conference on cloud computing (Cloud’09), Bangalore, pp 41–48

    Chapter  Google Scholar 

  41. Stoess J, Lang C, Bellosa F (2007) Energy management for hypervisor-based virtual machines. In: Proceedings of the USENIX annual technical conference (ATC’07)

    Google Scholar 

  42. Kim KH, Beloglazov A, Buyya R (2009) Power-aware provisioning of cloud resources for real-time services. In: Proceedings of the 7th international workshop on middleware for grids, clouds and e-science (MGC’09), Champaign, USA

    Google Scholar 

  43. Kusic D, Kephart JO, Hanson JE et al (2009) Power and performance management of virtualized computing environments via lookahead control. Clust Comput 12(1):1–15

    Article  Google Scholar 

  44. Laszewski G, Wang L, Younge AJ et al (2009) Power-aware scheduling of virtual machines in dvfs-enabled clusters. In: IEEE international conference on cluster computing and workshop, New Orleans, LA, pp 1–10

    Chapter  Google Scholar 

  45. Younge AJ, Laszewski G, Wang L et al (2010) Efficient resource management for cloud computing environments. In: International conference on green computing, Chicago, USA, pp 357–364

    Chapter  Google Scholar 

  46. Rodero I, Jaramillo J, Quiroz A et al (2010) Energy-efficient application-aware online provisioning for virtualized clouds and data centers. In: International conference on green computing, Chicago, USA, pp 31–45

    Chapter  Google Scholar 

  47. Meisner D, Gold BT, Wenisch TF (2009) PowerNap: eliminating server idle power. In: Proceedings of the 14th international conference on architectural support for programming languages and operating systems (ASPLOS’09), Washington, USA, pp 205–216

    Chapter  Google Scholar 

  48. Lee YC, Zomaya AY (2010) Energy efficient utilization of resources in cloud computing systems. J Supercomput. doi:10.1007/s11227-010-0421-3

    Google Scholar 

  49. Fan X, Weber WD, Barroso LA (2007) Power provisioning for a warehouse-sized computer. In: Proceedings of the 34th annual international symposium on computer architecture (ISCA’), NY, USA, pp 13–23

    Google Scholar 

  50. Colarelli D, Grunwald D (2002) Massive arrays of idle disks for storage archives. In: Proceedings of the ACM/IEEE conference on supercomputing (SC’02), Baltimore, USA, pp 1–11

    Google Scholar 

  51. Son SW, Chen G, Kandemir M (2005) Disk layout optimization for reducing energy consumption. In: Proceedings of the 19th annual international conference on supercomputing (ICS’05), Cambridge, USA, pp 274–283

    Chapter  Google Scholar 

  52. Narayanan D, Donnelly A, Rowstron A (2008) Write off-loading: practical power management for enterprise storage. ACM Trans Storage 4(3):1–23

    Article  Google Scholar 

  53. Carrera EV, Pinheiro E, Bianchini R (2003) Conserving disk energy in network servers. In: Proceedings of the 17th annual international conference on supercomputing (ICS’03), San Francisco, USA, pp 86–97

    Chapter  Google Scholar 

  54. Pinheiro E, Bianchini R (2004) Energy conservation techniques for disk array-based servers. In: Proceedings of the 18th annual conference on supercomputing (ICS’04), Saint-Malo, France, pp 68–78

    Chapter  Google Scholar 

  55. Pinheiro E, Bianchini R, Dubnicki C (2006) Exploiting redundancy to conserve energy in storage systems. In: Proceedings of ACM SIGMETRIC’06, Saint Malo, France, pp 15–26

    Google Scholar 

  56. Huang H, Hung W, Shin KG (2005) FS2: dynamic data replication in free disk space for improving disk performance and energy consumption. In: Proceedings of the 20th ACM symposium on operating systems principles (SOSP’05), Brighton, UK, pp 263–276

    Google Scholar 

  57. Weddle C, Oldham M, Qian J et al (2007) PARAID: The gear-shifting power-aware RAID. ACM Trans Storage 3(13):245–260

    Google Scholar 

  58. Chou J, Kim J, Rotem D (2011) Energy-aware scheduling in disk storage systems. In: 31st international conference on distributed computing systems (ICDCS’11), pp 423–433

    Chapter  Google Scholar 

  59. Kim J, Rotem D (2010) Using replication for energy conservation in RAID systems. In: Parallel and distributed processing techniques and applications conference (PDPTA’10)

    Google Scholar 

  60. Liao XL, Bai S, Wang YP et al (2011) ISRA-based grouping: a disk reorganization approach for disk energy conservation and disk performance enhancement. IEEE Trans Comput 60(2):292–304

    Article  MathSciNet  Google Scholar 

  61. Gurumurthi S, Sivasubramaniam A, Kandemir M et al (2003) DRPM: dynamic speed control for power management in server class disk. In: Proceedings of the 30th annual international symposium on computer architecture (ISCA’03), San Diego, USA, pp 169–181

    Google Scholar 

  62. Zhu Q, Shankar A, Zhou Y (2004) PB-LRU: a self tuning power aware storage cache replacement algorithm for conserving disk energy. In: Proceedings of the 18th annual international conference on supercomputing (ICS’04), Saint Malo, France, pp 79–88

    Chapter  Google Scholar 

  63. Zhu Q, David FM, Devaraj CF et al (2004) Reducing energy consumption of disk storage using power-aware cache management. In: 10th international symposium on high performance computer architecture (HPCA’04)

    Google Scholar 

  64. Zhu Q, Chen Z, Tan L et al (2005) Hibernator: helping disk arrays sleep through the winter. In: Proceedings of the 20th ACM symposium on operating systems principles (SOSP’05), Brighton, UK, pp 177–190

    Google Scholar 

  65. Zhu Q, Zhou Y (2005) Power-aware storage cache management. IEEE Trans Comput 54(5):587–602

    Article  MathSciNet  Google Scholar 

  66. EMC Symmetrix 3000 and 5000 Enterprise Storage Systems product description guide. http://www.emc.com/products/productpdfs/pdg/symm_3_5_pdg.pdf

  67. Ganesh L, Weatherspoon H, Balakrishnan M et al (2007) Optimizing power consumption in large scale storage systems. In: Proceedings of the 11th USENIX workshop on hot topics in operating systems (HotOS’07), CA, USA

    Google Scholar 

  68. Brunschwiler T, Smith B, Ruetsche E et al (2009) Toward zero-emission data centers through direct reuse of thermal energy. IBM J Res Dev 53(3):11.1–11.13

    Article  Google Scholar 

  69. Hamann HF, Kessel TG, Iyengar M et al (2009) Uncovering energy efficiency opportunities in data centers. IBM J Res Dev 53(3):10.1–10.12

    Article  Google Scholar 

  70. Ahmad F, Vijaykumar TN (2010) Joint optimization of idle and cooling power in data centers while maintaining response time. In: Proceedings of the 15th international conference on architectural support for programming languages and operating systems (ASPLOS’10), Pittsburgh, USA, pp 243–256

    Google Scholar 

  71. Chen Y, Gmach D, Hyser C et al (2010) Integrated management of application performance, power and cooling in data centers. In: Network operations and management symposium (NOMS’10), Osaka, Japan, pp 615–622

    Google Scholar 

  72. Pakbaznia E, Ghasemazar M, Pedram M (2010) Temperature-aware dynamic resource provisioning in a power-optimized datacenter. In: Proceedings of the conference on design, automation and test in Europe (DATE’10), Dresden, Germany, pp 124–129

    Google Scholar 

  73. Tang Q, Kumar S, Gupta S (2008) Energy-efficient thermal-aware task scheduling for homogeneous high-performance computing data center: a cyber-physical approach. IEEE Trans Parallel Distrib Syst 19(11):1458–1472

    Article  Google Scholar 

  74. Moore J, Chase J, Ranganathan P (2006) Weatherman: automated, online, and predictive thermal mapping and management for data center. In: International conference on autonomic computing (ICAC’06), pp 155–164

    Chapter  Google Scholar 

  75. Moore J, Chase J, Ranganathan P (2005) Making scheduling cool: temperature-aware workload placement in data centers. In: Proceedings of the annual conference on USENIX annual technical conference (ATC’05)

    Google Scholar 

  76. Kim MG, Choi JY, Kang M et al (2008) Adaptive power saving mechanism considering the request period of each initiation of awakening in the IEEE 802.16e system. IEEE Commun Lett 12(2):106–108

    Article  Google Scholar 

  77. He Y, Yuan R (2009) A novel scheduled power saving mechanism for 802.11 wireless LANs. IEEE Trans Mob Comput 18(10):1368–1383

    Google Scholar 

  78. Kliazovich D, Bouvry P, Khan SU (2010) DENS: data center energy-efficient network-aware scheduling. In: ACM/IEEE international conference on green computing and communications, Hangzhou, China, pp 69–75

    Google Scholar 

  79. Kliazovich D, Bouvry P, Khan SU (2011) GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J Supercomput. doi:10.1007/s11227-010-0504-1

    Google Scholar 

  80. Mahadevan P, Sharma P, Banerjee S et al (2009) Energy aware network operations. In: Proceedings of IEEE INFOCOM’09, Rio de Janeiro, pp 1–6

    Google Scholar 

  81. Gunaratne C, Christensen K, Nordman B et al (2008) Reducing the energy consumption of Ethernet with adaptive link rate (ALR). IEEE Trans Comput 57(4):448–461

    Article  MathSciNet  Google Scholar 

  82. Chabarek J, Sommers J, Barford P et al (2008) Power awareness in network design and routing. In: Proceedings of IEEE INFOCOM’08, Phoenix, AZ, pp 457–465

    Google Scholar 

  83. Gupta M, Singh S (2003) Greening of the internet. In: Proceedings of ACM SIGCOMM’03, Karlsruhe, Germany, pp 19–26

    Google Scholar 

  84. Nedevschi S, Popa L, Iannaccone G et al (2008) Reducing network energy consumption via rate-adaptation and sleeping. In: Proceedings of the 7th USENIX conference on networked systems design and implementation (NSDI’08), San Francisco, USA

    Google Scholar 

  85. Heller B, Seetharaman S, Mahadevan P et al (2010) ElasticTree: saving energy in data center networks. In: Proceedings of the 7th USENIX conference on networked systems design and implementation (NSDI’10), Boston, USA

    Google Scholar 

  86. Gupta M, Singh S (2007) Using low-power modes for energy conservation in Ethernet LANs. In: Proceedings of IEEE INFOCOM’07, Anchorage, AK, pp 2451–2455

    Google Scholar 

  87. Gupta M, Singh S (2007) Dynamic Ethernet link shutdown for energy conservation on Ethernet links. In: IEEE international conference on communications (ICC’07), Glasgow, pp 6156–6161

    Chapter  Google Scholar 

  88. Gunaratne C, Christensen K, Nordman B (2005) Managing energy consumption costs in desktop PCs and LAN switches with proxying, split TCP connections, and scaling of link speed. Int J Netw Manag 15(5):297–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Yuan Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, SY., Ali, S., She, K. et al. State-of-the-art research study for green cloud computing. J Supercomput 65, 445–468 (2013). https://doi.org/10.1007/s11227-011-0722-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-011-0722-1

Keywords

Navigation