[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Belnap–Dunn Modal Logic with Value Operators

  • Published:
Studia Logica Aims and scope Submit manuscript

This article has been updated

Abstract

The language of Belnap–Dunn modal logic \({\mathscr {L}}_0\) expands the language of Belnap–Dunn four-valued logic (having constant symbols for the values 0 and 1) with the modal operator \(\Box \). We introduce the polarity semantics for \({\mathscr {L}}_0\) and its two expansions \({\mathscr {L}}_1\) and \({\mathscr {L}}_2\) with value operators. The local finitary consequence relation \(\models _4^k\) in the language \({\mathscr {L}}_k\) with respect to the class of all frames is axiomatized by a sequent system \(\mathsf {S}_k\) where \(k=0, 1, 2\). We prove by using translations between sequents and formulas that these languages under the polarity semantics have the same expressive power on the level of frames with the language \({\mathscr {L}}_0\) under the relational semantics for classical modal logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 02 July 2021

    The DOI URL in the reference [24] was incorrectly published. It has been corrected from https://doi.org/10.1017/s17550203119000121 to https://doi.org/10.1017S1755020319000121.

References

  1. Belnap, N., A useful four-valued logic, in J. M. Dunn and G. Epstein, (eds.), Modern Uses of Multiple-Valued Logic, D. Reidel Publishing Company, Dordrecht, Holland, 1977, pp. 5–37.

    Chapter  Google Scholar 

  2. Blackburn, P., L. De Rijke, and Y. Venema, Modal Logic, Cambridge University Press, Cambridge MA, 2001.

    Book  Google Scholar 

  3. Bou, F., Esteva, M. Godo, and R. Rodríguez, On the minimum many-valued modal logic over a finite residuated lattice, Journal of Logic and Computation 21: 739–790, 2011.

    Google Scholar 

  4. Dunn, J. M., The Algebra of Intensional Logics, Ph.D. thesis, University of Pittsburg, 1966.

  5. Dunn, J. M., The effective equivalence of certain propositions about De Morgan lattices, The Journal of Symbolic Logic 32: 433–434, 1967.

    Google Scholar 

  6. Dunn, J. M., A Kripke-style semantics for first-degree relevant implications (abstract), The Journal of Symbolic Logic 36: 362–363, 1971.

  7. Dunn, J. M., Intuitive semantics for first-degree entailments and coupled trees, Philosophical Studies 29: 149–168, 1976.

    Article  Google Scholar 

  8. Dunn, J. M., Relevance logic and entaiment, in D. Gabbay and F. Guenthner, (eds.), Handbook of Philosophical Logic Volume III: Alternatives in Classical Logic, Springer Science+Business Media, Dordrecht, 1986, pp. 117–224.

    Chapter  Google Scholar 

  9. Dunn, J. M., A comparative study of various model-theoretic treatments of negation: a history of formal negation, in D. M. Gabbay and H. Wansing, (eds.), What is Negation?, Kluwer Academic Publishers, 1999, pp. 23–51.

  10. Dunn, J. M., Partiality and its dual, Studia Logica 65: 5–40, 2000.

    Article  Google Scholar 

  11. Fitting, M., Many-valued modal logics, Fundamenta Informaticae 15: 235–254, 1991.

    Article  Google Scholar 

  12. Font, J. M., Belnap’s four-valued logic and De Morgan lattices, Logic Journal of IGPL 5(3): 413–440, 1997.

    Article  Google Scholar 

  13. Font, J. M., Addendum to the paper Belnaps four-valued logic and De Morgan lattices, Logic Journal of IGPL 7(5): 671–672, 1999.

    Article  Google Scholar 

  14. Font, J. M., Abstract Algebraic Logic, Colledge Publications, London, 2016.

    Google Scholar 

  15. Goldblatt, R., and S. K. Thomason, Axiomatic classes in propositional modal logic, in J. Crossley, (ed.), Algebra and Logic, Springer, Berlin, 1974, pp. 163–173.

    Google Scholar 

  16. Goranko, V., and M. Otto, Model theory of modal logic, in P. Blackburn, J. van Benthem and F. Wolter, (eds.), Handbook of Modal Logic, Elsevier, 2007, pp. 249–329.

  17. Lin, Y., and M. Ma, Polarity semantics for negation as a modal operator, Studia Logica 108:877–902, 2019.

    Article  Google Scholar 

  18. Ma, M., and Y. Lin, A Deterministic Weakening of Belnap-Dunn Logic, Studia Logica 107: 283–312, 2019.

    Article  Google Scholar 

  19. Ma, M., and Y. Lin, Countably Many Weakenings of Belnap-Dunn Logic, Studia Logica 108: 163–198, 2020.

    Article  Google Scholar 

  20. Morgan, C. G., Local and global operators and many-valued modal logics, Notre Dame Journal of Formal Logic 20: 401–411, 1979.

    Google Scholar 

  21. Morikawa, O., Some modal logics based on a three-valued logic, Notre Dame Journal of Formal Logic 30: 130–137, 1989.

    Google Scholar 

  22. Odintsov, S. P., and E. I. Latkin, BK-lattices. Algebraic semantics for Belnapian modal logic, Studia Logica 100: 319–338, 2012.

    Google Scholar 

  23. Odintsov, S. P., and S. O. Speranski, The lattice of Belnapian modal logics: special extensions and counterparts, Logic and Logical Philosophy 25(1): 3–33, 2016.

    Google Scholar 

  24. Odintsov, S. P., and S. O. Speranski, Belnap-Dunn modal logics: truth constants vs. truth values, The Review of Symbolic Logic 2019. https://doi.org/10.1017/S1755020319000121.

  25. Odintsov, S. P., and H. Wansing, Modal logics with Belnapian truth values, Journal of Applied Non-Classical Logics 20(3): 279–301, 2017.

    Article  Google Scholar 

  26. Ostermann, P., Many-valued modal propositional calculi, Zeitschrift für mathematische Logik und Gründlagen der Mathematik 34: 343–354, 1988.

    Article  Google Scholar 

  27. Rivieccio, U., A. Jung, and R. Jansana, R., Four-valued modal logic: Kripke semantics and duality, Journal of Logic and Computation 27(1): 155–199, 2015.

  28. Schotch, P. K., J. B. Jensen, P. F. Larsen, and E. J. MacLellan, A note on three-valued modal logic, Notre Dame Journal of Formal Logic 19: 63–68, 1978.

    Google Scholar 

  29. Segerberg, K., Some modal logics based on a three-valued logic, Theoria 33: 53–71, 1967.

    Article  Google Scholar 

  30. Thomason, S. K., Possible worlds and many truth values, Studia Logica 37: 195–204, 1978.

    Article  Google Scholar 

  31. van Benthem, J., Modal Correspondence Theory, Ph.D. thesis, University of Amsterdam, 1993.

Download references

Acknowledgements

The fund was provide by Chinese National Funding of Social Sciences (Grant No. 18ZDA033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented by Jacek Malinowski

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Ma, M. Belnap–Dunn Modal Logic with Value Operators. Stud Logica 109, 759–789 (2021). https://doi.org/10.1007/s11225-020-09925-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-020-09925-y

Keywords

Navigation