Abstract
Ewald considered tense operators G, H, F and P on intuitionistic propositional calculus and constructed an intuitionistic tense logic system called IKt. In 2014, Figallo and Pelaitay introduced the variety IKt of IKt-algebras and proved that the IKt system has IKt-algebras as algebraic counterpart. In this paper, we introduce and study the variety of tense Nelson algebras. First, we give some examples and we prove some properties. Next, we associate an IKt-algebra to each tense Nelson algebras. This result allowed us to determine the congruence of the tense Nelson algebras and also to characterize the subdirectly irreducible tense Nelson algebras and particularly the simple tense Nelson algebras. Finally, we prove that there exists an equivalence between the category of IKt-algebras and the category of tense centered Nelson algebras.
Similar content being viewed by others
References
Bakhshi, M., Tense operators on non–commutative residuated lattices, Soft Comput. 21(15):4257–4268, 2017.
Botur, M., I. Chajda, R., Halaš, and M. Kolařik, Tense operators on Basic Algebras, Internat. J. Theoret. Phys. 50(12):3737–3749, 2011.
Botur, M., and J. Paseka, Partial tense \(MV\)-algebras and related functions, Fuzzy Sets Syst. 326:24–33, 2017.
Burges, J., Basic tense logic, in D. M. Gabbay, and F. Günter (eds.), Handbook of Philosophical Logic, vol. II, Reidel, Dordrecht 1984, pp. 89–139.
Chajda, I., Algebraic axiomatization of tense intuitionistic logic, Cent. Eur. J. Math. 9(5):1185–1191, 2011.
Chiriţă, C., Tense \(\theta \)-valued Łukasiewicz–Moisil algebras, J. Mult. Valued Logic Soft Comput. 17(1):1–24, 2011.
Diaconescu, D., and G. Georgescu, Tense operators on \(MV\)-algebras and Łukasiewicz-Moisil algebras, Fund. Inform. 81(4):379–408, 2007.
Dzik, W., J. Järvinen, and M. Kondo, Characterizing intermediate tense logics in terms of Galois connections, Log. J. IGPL 22(6):992–1018, 2014.
Ewald, W. B., Intuitionistic tense and modal logic, J. Symbolic Logic 51(1):166–179, 1986.
Figallo, A. V., I. Pascual, and G. Pelaitay, Subdirectly irreducible \(IKt\)-algebras, Studia Logica 105(4):673–701, 2017.
Figallo, A. V., I. Pascual, and G. Pelaitay, A topological duality for tense \(LM_n\)-algebras and applications, Log. J. IGPL 26(4):339–380, 2018.
Figallo, A. V., I. Pascual, and G. Pelaitay, Principal and Boolean congruences on \(IKt\)-algebras, Studia Logica 106(4):857–882, 2018.
Figallo, A. V., I. Pascual, and G. Pelaitay, A topological duality for tense \(\theta \)-valued Łukasiewicz–Moisil algebras, Soft Comput. 23:3979, 2019.
Figallo, A. V., and G. Pelaitay, Remarks on Heyting algebras with tense operators, Bull. Sect. Logic Univ. Lodz 41(1–2):71–74, 2012.
Figallo, A. V., and G. Pelaitay, An algebraic axiomatization of the Ewald’s intuitionistic tense logic, Soft Comput. 18(10):1873–1883, 2014.
Figallo, A. V., G. Pelaitay, and C. Sanza, Discrete duality for \(TSH\)-algebras, Commun. Korean Math. Soc. 27(1):47–56, 2012.
Gabbay, D. M., Model theory for tense logics, Ann. Math. Logic 8:185–236, 1975.
Jónsson, B., A survey of Boolean algebras with operators. Algebras and orders (Montreal, PQ, 1991), pp. 239–286, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 389, Kluwer Acad. Publ., Dordrecht, 1993.
Kowalski T., Varieties of tense algebras, Rep. Math. Logic 32:53–95, 1998.
Lemmon, E. J., Algebraic semantics for modal logics. I. J. Symbolic Logic 31:46–65, 1966.
Lemmon, E. J., Algebraic semantics for modal logics. II. J. Symbolic Logic 31:191–218, 1966.
Mac Lane, S., Categories for the Working Mathematician, 2nd edn. Springer-Verlag, NewYork, 1998.
Markov, A. A., A constructive logic, Uspehi Mathematiceskih Nauk, (N.S.) 5:187–188, 1950.
Menni, M., and C. Smith, Modes of adjointness, J. Philos. Logic 43(2-3):365–391, 2014.
Monteiro A., Algebras de Nelson semi-simples (Resumen), Rev. Unión Mat. Argentina 21:145–146, 1963.
Monteiro A., Constructions des algébres de Nelson finies, Bull. Acad. Pol. des Sc. 11:359–362, 1963.
Monteiro, A., Les elements reguliers d’ un \(N\)-lattice, Textos e Notas No 15, Univ. de Lisboa, 1978.
Monteiro, A., Les \(N\)-lattice linéaires, Textos e Notas No 15, Univ. de Lisboa, 1978.
Monteiro, A., and L. Monteiro, Axiomes indépendants pour les algébres de Nelson, de Lukasiewicz trivalentes, de De Morgan et de Kleene. In Unpublished papers, I, Notas de Lógica Matemática, vol. 40, 13 pp. Univ. Nac. del Sur, Bahía Blanca, 1996.
Nelson, D., Constructible falsity, J. Symbolic Logic 14:16–26, 1949.
Orłowska, E., A. M. Radzikowska, and I. Rewitzky, Dualities for structures of applied logics. Studies in Logic (London), 56. Mathematical Logic and Foundations. College Publications, London, 2015.
Orłowska, E., and I. Rewitzky, Discrete dualities for Heyting algebras with operators, Fund. Inform. 81(1-3):275–295, 2007.
Rasiowa H., \(N\)-lattices and constructive logic with strong negation, Fund. Math. 46:61–80, 1958.
Rasiowa H., An algebraic aproach to non-classic logic, North-Holland, Amsterdam, 1974.
Rescher, N., and A. Urquhart, The Introduction of Tense Operators, in Temporal Logic. LEP Library of Exact Philosophy, vol 3. Springer, Vienna 1971.
Sendlewski, A., Nelson algebras through Heyting ones. I. Studia Logica 49(1):105–126, 1990.
Sofronie–Stokkermans, V., Representation theorems and the semantics of non-classical logics, and applications to automated theorem proving. Beyond two: theory and applications of multiple-valued logic, Stud. Fuzziness Soft Comput., vol. 114, Physica, Heidelberg, 2003, pp. 59–100.
Vakarelov, D., Notes on \(N\)-lattices and constructive logic with strong negation, Studia Logica 36(1–2):109–125, 1977.
von Karger, B., Temporal algebra. Mathematical Structures in Computer Science 8(3):277-320, 1998.
Acknowledgements
The authors acknowledge many helpful comments from the anonymous referee, which considerably improved the presentation of this paper. Jonathan Sarmiento want to thank the institutional support of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Figallo, A.V., Pelaitay, G. & Sarmiento, J. An Algebraic Study of Tense Operators on Nelson Algebras. Stud Logica 109, 285–312 (2021). https://doi.org/10.1007/s11225-020-09907-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-020-09907-0