[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Congruence Lattices of Semilattices with Operators

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The duality between congruence lattices of semilattices, and algebraic subsets of an algebraic lattice, is extended to include semilattices with operators. For a set G of operators on a semilattice S, we have \({{\rm Con}(S,+,0,G) \cong^{d} {{\rm S}_{p}}(L,H)}\), where L is the ideal lattice of S, and H is a corresponding set of adjoint maps on L. This duality is used to find some representations of lattices as congruence lattices of semilattices with operators. It is also shown that these congruence lattices satisfy the Jónsson–Kiefer property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adaricheva, K., and J. Nation, Lattices of quasi-equational theories as congruence lattices of semilattices with operators parts I and II, International Journal of Algebra and Computation 22:N7, 2012.

  2. Adaricheva K., Maróti M., McKenzie R., Nation J. B., Zenk E.: The Jónsson–Kiefer property, Studia Logica 83, 111–131 (2006)

    Article  Google Scholar 

  3. Davey B., Jackson M., Pitkethly J., Talukder M.: Natural dualities for semilattice-based algebras, Algebra Universalis 57, 463–490 (2007)

    Article  Google Scholar 

  4. Fajtlowicz, S., and J. Schmidt, Bézout Families, Join Congruences and Meet-Irreducible Ideals, in Lattice Theory (Proc. Colloq., Szeged, 1974), Colloq. Math. Soc. János Bolyai 14, North Holland, Amsterdam, 1976, pp. 51–76.

  5. Freese R., Nation J.: Congruence lattices of semilattices, Pacific Journal of Mathematics 49, 51–58 (1973)

    Article  Google Scholar 

  6. Gorbunov V.: The structure of lattices of quasivarieties, Algebra Universalis 32, 493–530 (1994)

    Article  Google Scholar 

  7. Gorbunov, V., Algebraic Theory of Quasivarieties, Siberian School of Algebra and Logic, Plenum, New York, 1998.

  8. Gorbunov, V., and V. Tumanov, Construction of Lattices of Quasivarieties, Math. Logic and Theory of Algorithms, Trudy Inst. Math. Sibirsk. Otdel. Adad. Nauk SSSR 2, Nauka, Novosibirsk, 1982, pp. 12–44.

  9. Hoehnke, H.-J., Fully Invariant Algebraic Closure Systems of Congruences and Quasivarieties of Algebras, Lectures in Universal Algebra (Szeged, 1983), Colloq. Math. Soc. János Bolyai 43, North-Holland, Amsterdam, 1986, pp. 189–207.

  10. Jónsson B., Kiefer J. E.: Finite sublattices of a free lattice, Canadian Journal of Mathematics 14, 487–497 (1962)

    Article  Google Scholar 

  11. Papert D.: Congruence relations in semilattices, Journal of the London Mathematical Society 39, 723–729 (1964)

    Article  Google Scholar 

  12. Schmidt E. T.: Zur Charakterisierung der Kongruenzverbände der Verbände, Mat. Časopis Sloven. Akad. Vied 18, 3–20 (1968)

    Google Scholar 

  13. Schmidt, E. T., Kongruenzrelationen Algebraischer Strukturen, Mathematische Forschungsberichte, XXV VEB Deutscher Verlag der Wissenschaften, Berlin, 1969.

  14. Tumanov V.: Finite distributive lattices of quasivarieties, Algebra and Logic 22, 119–129 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Nation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyndman, J., Nation, J.B. & Nishida, J. Congruence Lattices of Semilattices with Operators. Stud Logica 104, 305–316 (2016). https://doi.org/10.1007/s11225-015-9641-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-015-9641-0

Keywords

Navigation