[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Combinatory Logic and the Semantics of Substructural Logics

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The results of this paper extend some of the intimate relations that are known to obtain between combinatory logic and certain substructural logics to establish a general characterization theorem that applies to a very broad family of such logics. In particular, I demonstrate that, for every combinator X, if LX is the logic that results by adding the set of types assigned to X (in an appropriate type assignment system, TAS) as axioms to the basic positive relevant logic BT, then LX is sound and complete with respect to the class of frames in the Routley-Meyer relational semantics for relevant and substructural logics that meet a first-order condition that corresponds in a very direct way to the structure of the combinator X itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. R., N. D. Belnap, Jr., and J. M. Dunn, Entailment: The Logic of Relevance and Entailment, Vol. II, Princeton University Press, 1992.

  2. Barbanera F., Dezani-Ciancaglini M. and de’Liguoro U. (1995). ‘Intersection and Union Types: Syntax and Semantics’ . Information and Computation 119: 202–230

    Article  Google Scholar 

  3. Barendregt H., Coppo M., and Dezani-Ciancaglini M. (1983). ‘A Filter Lambda Model and the Completeness of Type Assignment’. Journal of Symbolic Logic 48: 931–940

    Article  Google Scholar 

  4. Bimbo K., (2004). ‘Semantics for Dual and Symmetric Combinatory Calculi’. Journal of Philosophical Logic 33: 125–153

    Article  Google Scholar 

  5. Bimbo K. and Dunn J.M. (1998). ‘Two Extensions of the Structurally Free Logic LC’. Logic Journal of the IGPL 6: 403–424

    Article  Google Scholar 

  6. Curry, H. and R. Feys, Combinatory Logic, North Holland, 1958.

  7. Dezani-Ciancaglini M., and Hindley J.R. (1992). ‘Intersection Types for Combinatory Logic’, Theoretical Computer Science 100: 303–324

    Article  Google Scholar 

  8. Dezani-Ciancaglini M., Meyer R.K., and Motohama Y. (2002). ‘The Semantics of Entailment Omega’. Notre Dame Journal of Formal Logic 43: 129–145

    Article  Google Scholar 

  9. Dunn, J. M., ‘Relevance Logic and Entailment’, in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 1st ed., vol. III, Kluwer, 1986, pp. 117–224.

  10. Dunn J.M., and Meyer R.K. (1997). ‘Combinators and Structurally Free Logic’. Logic Journal of IGPL 5: 505–537

    Article  Google Scholar 

  11. Goble L. (2004). ‘Combinator Logics’. Studia Logica76: 17–66

    Article  Google Scholar 

  12. Hindley, J. R., and J. P. Seldin, Introduction to Combinators and λ-Calculus, Cambridge University Press, 1986.

  13. Mares, E. D., and R. K. Meyer, ‘Relevant Logic’, in L. Goble (ed.), The Blackwell Guide to Philosophical Logic, Blackwell Publishers, 2001, pp. 280–308.

  14. Meyer R.K. (2004). ‘Ternary Relations and Relevant Logics’. Annals of Pure and Applied Logic 127: 195–217

    Article  Google Scholar 

  15. Meyer R.K., and Routley R. (1972). ‘Algebraic Analysis of Entailment I’. Logique et Analyse 15: 407–428

    Google Scholar 

  16. Pal, K., and R. K. Meyer ‘Basic Relevant Theories for Combinators at Levels I and II’, Australasian Journal of Logic, 3: 14–32, 2005; http://www.philosophy.unimelb.edu.au/ajl/2005.

  17. Routley R., and Meyer R.K. (1972). ‘The Semantics of Entailment III’. Journal of Philosophical Logic 1: 192–208

    Article  Google Scholar 

  18. Routley R., R. K., Meyer, V. Plumwood, and R. Brady, Relevant Logics and their Rivals, Ridgeview Pub. Co., 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lou Goble.

Additional information

Presented by Rob Goldblatt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goble, L. Combinatory Logic and the Semantics of Substructural Logics. Stud Logica 85, 171–197 (2007). https://doi.org/10.1007/s11225-007-9027-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-007-9027-z

Keywords

Navigation